Augmented Modular Reinforcement Learning based on Heterogeneous Knowledge (arxiv preprint)


In order to mitigate some of the inefficiencies of Reinforcement Learning (RL), modular approaches composing different decision-making policies to derive agents capable of performing a variety of tasks have been proposed. The modules at the basis of these architectures are generally reusable, also allowing for “plug-and-play” integration. However, such solutions still lack the ability to process and integrate multiple types of information (knowledge), such as rules, sub-goals, and skills. We propose Augmented Modular Reinforcement Learning (AMRL) to address these limitations. This new framework uses an arbitrator to select heterogeneous modules and seamlessly incorporate different types of knowledge. Additionally, we introduce a variation of the selection mechanism, namely the Memory-Augmented Arbitrator, which adds the capability of exploiting temporal information. We evaluate the proposed mechanisms on established as well as new environments and benchmark them against prominent deep RL algorithms. Our results demonstrate the performance improvements that can be achieved by augmenting traditional modular RL with other forms of heterogeneous knowledge.