Introduction	Background and Theory	VAE on Hilbert spaces	Simulations	Application	Conclusion	Questions
00000	00000	000	000000000	00	00	000000

Variational Autoencoders on Hilbert spaces

Generating functional data

Lorenz Wolf Supervisor Dr Andrew Duncan

Department of Mathematics Imperial College London

16 September 2021

Introduction •0000	Background and Theory	VAE on Hilbert spaces	Simulations 000000000	Application 00	Conclusion 00	Questions 000000
Motiva	ition					

- Abundance of functional data
- Successes of Deep Learning
- Applications of Generative Modelling

Introduction 00000	Background and Theory	VAE on Hilbert spaces	Simulations 000000000	Application 00	Conclusion 00	Questions 000000	
Outline	9						

- Functional Data
- Background and Theory
- Variational Autoencoders on Hilbert spaces
- Simulations
- Application
- Conclusion

Introduction 00000	Background and Theory	VAE on Hilbert spaces	Simulations 000000000	Application 00	Conclusion 00	Questions 000000
Functio	onal Data					

- Infinite degrees of freedom
- $\{x_i\}_{i=1}^N$, where $x_i = (X_i(t_{ij}))_{j=1}^M$ for $t_{i1}, \ldots, t_{iM} \in \mathcal{I}$

of the second se

Figure: Sugar spectra (Source¹)

Emissions at wavelength 230 couloured by Ash content

Imperial College London

¹http://jeffgoldsmith.com/IWAFDA/shortcourse*s* ofr.html

 Introduction
 Background and Theory
 VAE on Hilbert spaces
 Simulations
 Application
 Conclusion
 Questions

 00000
 00000
 000
 00
 00
 000000
 00
 000000

Why take a functional approach?

- Allows evaluation at any point in time
- Continuity, smoothness, and derivatives
- Multivariate methods may not be robust $M \gg N$

 Introduction
 Background and Theory
 VAE on Hilbert spaces
 Simulations
 Application
 Conclusion
 Questions

 Grid
 Refinement Invariance
 Principle (GRIP)
 Conclusion
 Conclusi

Theorem (GRIP)

Methods for functional data should be robust under changes of the dimension of the representation as long as the dimension is large enough to give an accurate representation.

How to devise methods appropriately?

- \rightarrow Method for functional data and project into finite dimensions
- \rightarrow Method for multivariate data and check limit as $M\rightarrow\infty$

Introduction	Background and Theory	VAE on Hilbert spaces	Simulations	Application	Conclusion	Questions
00000	●0000		000000000	00	00	000000
Basis E	Expansions					

Proposition

Any $f\in L^2(\mathcal{D})$ with an orthonormal basis $\{e_n\}_{n=1}^\infty$ can be written as $$\infty$$

$$f(t)=\sum_{n=1}f_ne_n(t),$$

where $f_n = \int_{\mathcal{D}} f(t) e_n(t) dt$.

• In practice truncated to a suitable number of basis functions B

$$f(t) \approx \sum_{n=1}^{B} f_n e_n(t)$$

Different bases - Fourier basis

$$e_1(t) = 1,$$

 $e_2(t) = \sqrt{2}sin(2\pi t),$
 $e_3(t) = \sqrt{2}cos(2\pi t),$ etc.

- Fast computation
- Assumes periodicity

Figure: First 5 Fourier basis functions on [0, 1].

Introduction ocooo VAE on Hilbert spaces Simulations Application Conclusion Questions

Different bases - Kernel induced basis

Kernel induced basis

- Let k be a non-negative definite kernel
- Kernel induced basis (Mercer's theorem)
- Eigenvectors of Gram matrix
- Matérn kernel yields Sobolev space [Bac20]

Can we choose a basis **optimally** for a specific problem / data set?

- Let X be a zero mean, square integrable random variable in $L^2([0, 1])$.
- Can we find basis functions u_1, \ldots, u_B minimising the loss

$$S(u_1,\ldots,u_B) = \mathbb{E} \left\| X - \sum_{i=1}^B \langle X, u_i \rangle u_i \right\|^2$$
?

 In fact taking u₁,..., u_B as in the Karhunen Loève expansion is solution, i.e. first B eigenfunctions of

$$(T_{\gamma}f)(t) = \int_0^1 \gamma(t,s)f(s)ds$$

where $\gamma(t, s)$ is the covariance function [Dun21].

Figure: Sugar emission spectra at wavelength 230.

Figure: First 3 normalised functional principal components.

Introduction	Background and Theory	VAE on Hilbert spaces	Simulations	Application	Conclusion	Questions
00000	00000	●○○	000000000	00	00	000000
Genera	tive Modellin	g				

- Given a training set X learn the distribution p(X)
- \bullet Unsupervised learning \rightarrow leverage unlabelled data
- Data augmentation, data privacy, density estimation, out of distribution detection

Imperial College

Figure: Gaussian VAE model architecture (Source²)

Maximise the ELBO (see [KW13]):

$$\mathcal{L}\left(\boldsymbol{\theta},\boldsymbol{\phi};\boldsymbol{x}\right) = -D_{\mathcal{K}L}\left(q_{\boldsymbol{\phi}}\left(\boldsymbol{z}\mid\boldsymbol{x}\right)||p_{\boldsymbol{\theta}}(\boldsymbol{z})\right) + \mathbb{E}_{q_{\boldsymbol{\phi}}\left(\boldsymbol{z}\mid\boldsymbol{x}\right)}\left[\log p_{\boldsymbol{\theta}}\left(\boldsymbol{x}\mid\boldsymbol{z}\right)\right]$$

 $^2 https://blog.bayeslabs.co/2019/06/04/All-you-need-to-know-about-Vae.html$

Variational Autoencoder on Hilbert spaces

Given function evaluation x_i^k at point s_i^k ([MFB20]):

$$\hat{x}_{e,i}^{k} = \beta_{i}^{\top} \Phi\left(s_{i}^{k}\right) \tag{1}$$

$$[z_{\mu}, z_{sd}]^{\top} = Encoder(\phi, \beta_i)$$
(2)

$$\mathcal{Z} \sim \mathcal{N}\left(z_{\mu}, z_{sd}^{2}\mathbb{I}\right)$$
(3)

$$\hat{\beta}_i = Decoder(\theta, \mathcal{Z})$$
 (4)

$$\hat{x}_{d,i}^{k} = \hat{\beta}_{i}^{\top} \Phi\left(s_{i}^{k}\right).$$
(5)

Where $\Phi(s_i^k) = (\varphi_1(s_i^k) \dots \varphi_B(s_i^k))^T$ with $\{\varphi_j\}_{j=1}^B$ a set of *B* basis functions.

Introduction 00000	Background and Theory	VAE on Hilbert spaces	€000000000000000000000000000000000000	Application 00	Conclusion 00	Questions
_						

Data sets

Figure: Sugar emission spectra.

0	-		
data.			

Figure: Simulated

Data set	N	М
Simulated	4000	100
Sugar spectra	268	571
Gridwatch	532	288

Table: Summary of data sets

Accorcing +	ha madal na	orformonco				
ntroduction Backgro 00000 00000	und and Theory VAE	on Hilbert spaces	Simulations 00000000	Application 00	Conclusion (00 (Questions

Assessing the model performance

- Synthetic sample diversity Visual comparison
- Discriminative comparison Classifier and maxmimum mean discrepancy (MMD)

Imperial College

• Usefulness of synthetic samples - Application

Introduction 00000	Background and Theory	VAE on Hilbert spaces	Simulations 00000000	Application 00	Conclusion 00	Questions 000000

Which basis should we choose?

Basis	Data	\widehat{MMD}_{CEXP}^2	Loss	Accuracy
	Simulated GP	0.0001	0.688	0.534
Fourier	Sugar Spectra	0.036	0.577	0.701
	Gridwatch	$3.49 imes10^{-22}$	0.697	0.476
	Simulated GP	0.011	0.655	0.604
FPCA	Sugar Spectra	0.002	0.697	0.515
	Gridwatch	$6.67 imes10^{-15}$	0.693	0.494
	Simulated GP	0.001	0.692	0.519
Matérn	Sugar Spectra	0.045	0.640	0.746
	Gridwatch	$3.34 imes10^{-10}$	0.694	0.5

Table: Results of the discriminative comparison.

Introduction 00000	Background and Theory	VAE on Hilbert spaces	Simulations 000000000	Application 00	Conclusion 00	Questions

Which basis should we choose?

Figure: Synthetic samples for simulated data.

Figure: t-SNE projection for simulated data.

Introduction	Background and Theory	VAE on Hilbert spaces	Simulations	Application	Conclusion	Questions
00000	00000	000	000000000	00	00	000000

Which basis should we choose?

Figure: Synthetic samples for sugar spectra data.

Figure: t-SNE projection for sugar spectra.

- condition on other knowledge c
- q_φ(z|x, c) and p_θ(x|z, c) as the variational and inference models of the conditional VAE [SLY15].
- The ELBO becomes:

 $\mathcal{L}\left(\theta,\phi;\mathsf{x},\mathsf{c}\right) = \mathbb{E}_{q_{\phi}(\mathsf{z}|\mathsf{x},\mathsf{c})}[\log p_{\theta}(\mathsf{x}|\mathsf{z},\mathsf{c})] - D_{\mathcal{K}\mathcal{L}}\left(q_{\phi}(\mathsf{z}|\mathsf{x},\mathsf{c})\|p_{\theta}(\mathsf{z}|\mathsf{c})\right).$

- Sugar spectra modes correspond wavelengths
- Gridwatch modes correspond to day of the week

Introduction 00000	Backgrou 00000	nd and Theo	ory	VAE on	Hilbert	spaces	Simulations	; 20	Application 00	Conclusion 00	Questions 000000	

Data set	Basis	Model type	\widehat{MMD}_{CEXP}^2	Loss	Accuracy
	EDCA	Conditional	0.004	0.369	0.792
	TICA	Standard	0.001	0.416	0.799
Sugar	Matérn	Conditional	0.019	0.163	0.954
Jugar		Standard	0.003	0.133	0.96
	Fourier	Conditional	0.012	0.055	0.994
		Standard	0.007	0.024	0.999
	FPCA	Conditional	$5.19 imes 10^{-163}$	0.6932	0.5
		Standard	$3.8 imes10^{-93}$	0.6932	0.5
Cridwatch	Matórn	Conditional	$8.16 imes 10^{-198}$	0.6932	0.5
Gridwatch	Watern	Standard	$7.74 imes10^{-73}$	0.6932	0.5
	Fourier	Conditional	$1.64 imes 10^{-265}$	0.6932	0.5
	Fourier	Standard	$7.34 imes10^{-70}$	0.6932	0.5

Table: Simulation results for the discriminative comparison of conditional and standard models with different basis.

Figure: Synthetic samples with FPCA based basis for sugar data.

Figure: Synthetic samples with Fourier basis for gridwatch data.

Introduction 00000	Background and Theory	VAE on Hilbert spaces	Simulations 000000000	Application •0	Conclusion 00	Questions 000000	
Applica	ation						

Table: Classification data set

Figure: Histogram of ash content in sugar samples.

Figure: Sugar spectra coloured corresponding to high or low ash content. Imperial College London

Introduction	Background and Theory	VAE on Hilbert spaces	Simulations	Application	Conclusion	Questions		
00000	00000		000000000	0•	00	000000		
Application								

Figure: Averaged accuracy of 4 independent runs on test set plotted against the ratio of number of samples containing a high ash content and number of samples containing a low ash content.

Introduction 00000	Background and Theory	VAE on Hilbert spaces	Simulations 000000000	Application 00	Conclusion ●0	Questions 000000
Conclu	sions					

- Basis choice is dependent on data
- FPCA based basis yields good sample diversity
- Prevent mode collapse by conditioning on classes
- Significant improvements by augmenting data set with synthetic samples

Future Work:

- Fully functional VAE
- Other bases e.g. B-splines
- Method for sparse functional data

ntroduction	Background and Theory	VAE on Hilbert spaces	Simulations	Application	Conclusion	Questions
0000	00000	000	000000000	00	0•	000000

Learning theory from first principles. Technical report, 2020.

Andrew Duncan. Functional Data Analysis Notes.

Technical report, 2021.

- Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. 12 2013.
- Swapnil Mishra, Seth Flaxman, and Samir Bhatt. piVAE: Encoding stochastic process priors with variational autoencoders, 2 2020.
- Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning Structured Output Representation using Deep Conditional Generative Models.

In C Cortes, N Lawrence, D Lee, M Sugiyama, and R Garnett, editors, <i>Advances in Neural Information Processing Systems</i> , volume 28. Curran Associates, Inc., 2015.	Introduction 00000	Background and Theory	VAE on Hilbert spaces	Simulations	Application 00	Conclusion	Questions 000000
		In C Cortes, N L editors, <i>Advance</i> volume 28. Curra	awrence, D Lee, <i>s in Neural Infor</i> an Associates, Ir	M Sugiya mation Pl nc., 2015.	ima, and rocessing	R Garnet <i>Systems</i> ,	:t,

George Wynne and Andrew B. Duncan. A Kernel Two-Sample Test for Functional Data. 8 2020.

Introduction 00000	Background and Theory	VAE on Hilbert spaces	Simulations 000000000	Application 00	Conclusion 00	Questions 000000
Questi	on - MMD					

Given a kernel k and the associated RKHS $\mathcal{H}_k(\mathcal{X})$ we define \mathcal{P} the set of Borel probability measures on \mathcal{X} . Furthermore, assuming k is measurable define $\mathcal{P}_k \subset \mathcal{P}$ as the set of all $P \in \mathcal{P}_k$ such that $\int k(x,x)^{\frac{1}{2}} dP(x) < \infty$. For $P, Q \in \mathcal{P}_k$ we define the Maximum Mean Discrepancy denoted $MMD_k(P,Q)$ as follows

$$\mathsf{MMD}_k(P,Q) = \sup_{\|f\|_{\mathcal{H}_k(\mathcal{X})} \leq 1} \left| \int f dP - \int f dQ \right|.$$

CEXP:

$$k_{c-\exp(F,I)}(s,t) = e^{-\frac{1}{2I^2}(s-t)^2}k_{\cos(F)}(s,t)$$

where $F \in \mathbb{N}$ and

$$k_{\cos(F)}(s,t) = \sum_{n=0}^{F-1} \cos(2\pi n(s-t)) \text{ on } [0,1]^2.$$

- Enables comparison of two samples on $L^2(\mathcal{D})$ with $\mathcal{D} \subset \mathbb{R}^d$
- Can be estimated unbiasedly by the Monte Carlo estimator

$$\widehat{\mathsf{MMD}}_k(X_n, Y_n)^2 := \frac{1}{n(n-1)} \sum_{i \neq j}^n h(z_i, z_j),$$

where $h(z_i, z_j) = k(x_i, x_j) + k(y_i, y_j) - k(x_i, y_j) - k(x_j, y_i)$ and k is a kernel [WD20].

The Matérn is kernel defined by

$$k_{M}(\mathbf{x},\mathbf{x}') = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu} \|\mathbf{x} - \mathbf{x}'\|_{2}}{\sigma} \right) K_{\nu} \left(\frac{\sqrt{2\nu} \|\mathbf{x} - \mathbf{x}'\|_{2}}{\sigma} \right), \ \sigma, \nu > 0,$$

where K_{ν} is the modified Bessel function of second kind of order ν and Γ is the Gamma function.

- $\bullet\,$ Translation invariant $\rightarrow\,$ Bochner's theorem
- Evaluate the kernel on a dense grid $t_1, \ldots, t_n \in \mathcal{I}$
- Obtain the Gram matrix defined by $G_{ij} = k(t_i, t_j)$ for i, j = 1, ..., n
- Compute the eigenvectors of the Gram matrix
- Interpolate eigenvectors to obtain eigenfunctions

Introduction Background and Theory VAE on Hilbert spaces Simulations Application Conclusion Questions 0000

Question - Karhunen Loève expansion

Theorem (Karhunen Loève)

Let $\{X_t, t \in [0,1]$ be a zero mean process on $L^2([0,1])$ with continuous covariance function $\gamma(s,t)$. Then

$$X_t = \sum_{n=1}^{\infty} \xi_n e_n(t), \quad t \in [0,1],$$

where $\xi_n = \int_0^1 X_t e_n(t) dt$ and $\{\lambda_n, e_n(t)\}_{n=1}^\infty$ are the eigenvalues and eigenfunctions of T_γ . Furthermore, we have that $\mathbb{E}\xi_n = 0$ and $\mathbb{E}(\xi_n \xi_m) = \lambda_n \delta_{n,m}$.

Here the integral operator T_{γ} associated with γ is defined by

$$(T_{\gamma}f)(t) = \int_0^1 \gamma(t,s)f(s)ds.$$

Question - Karhunen Loève expansion

- Series converges in L^2 to X(t), uniformly in t
- Coefficients are random variables and contain information about the variability around the eigenfunctions
- Represent realisations of the stochastic process as realisations of random coefficients
- Uncorrelated coefficients are independent for a Gaussian processes:

$$X_t = \sum_{n=1}^{\infty} \sqrt{\lambda_n} \xi_n e_n(t),$$

where $\{\xi_n\}_{n=1}^\infty$ are independent $\mathcal{N}(0,1)$

Introduction 00000	Background and Theory	VAE on Hilbert spaces	Simulations 000000000	Application 00	Conclusion 00	Questions 00000
Questi	on - t-SNE					

- t-distributed stochastic neighbour embedding
- Construct probability distribution over pairs of observations, similar pairs yield high probability
- Construct similar distribution over lower dimensional representation
- minimise Kullback-Leibler Divergence between distirbutions

Imperial College