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Functional Data

Observations are
functions in L2([0, 1])

Infinite degrees of
freedom

{xi}Ni=1 , where

xi = (Xi (tij))Mj=1
for ti1, . . . , tiM ∈ I

Figure: Sugar spectra (Source1)

1

1http://jeffgoldsmith.com/IWAFDA/shortcoursesofr .html
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Why take a functional approach?

Allows evaluation at any point in time

Continuity, smoothness, and derivatives

Multivariate methods may not be robust M >> N
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Grid Refinement Invariance Principle (GRIP)

Theorem (GRIP)

Methods for functional data should be robust under changes of the
dimension of the representation as long as the dimension is large
enough to give an accurate representation.

How to devise methods appropriately?
→ Method for functional data and project into finite dimensions
→ Method for multivariate data and check limit as M →∞
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Basis Expansions

Proposition

Any f ∈ L2(D) with an orthonormal basis {en}∞n=1 can be written
as

f (t) =
∞∑
n=1

fnen(t),

where fn =
∫
D f (t)en(t)dt.

In practice truncated to a suitable number of basis functions B

f (t) ≈
B∑

n=1

fnen(t)
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Different bases - Fourier basis

e1(t) = 1,
e2(t) =

√
2sin(2πt),

e3(t) =
√

2cos(2πt), etc.

Fast computation

Assumes periodicity

Figure: First 5 Fourier basis functions on
[0, 1].
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Different bases - Kernel induced basis

Kernel induced basis

Let k be a non-negative definite kernel

Kernel induced basis (Mercer’s theorem)

Eigenvectors of Gram matrix

Matérn kernel yields Sobolev space [Bac20]

Can we choose a basis optimally for a specific problem / data set?
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Functional Principal Components (FPCA)

Let X be a zero mean, square integrable random variable in
L2([0, 1]).

Can we find basis functions u1, . . . , uB minimising the loss

S(u1, . . . , uB) = E

∣∣∣∣∣
∣∣∣∣∣X−

B∑
i=1

〈X, ui 〉ui

∣∣∣∣∣
∣∣∣∣∣
2

?

In fact taking u1, . . . , uB as in the Karhunen Loève expansion
is solution, i.e. first B eigenfunctions of

(Tγf )(t) =

∫ 1

0
γ(t, s)f (s)ds

where γ(t, s) is the covariance function [Dun21].
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Functional Principal Components (FPCA)

Figure: Sugar emission spectra
at wavelength 230.

Figure: First 3 normalised
functional principal components.
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Generative Modelling

Given a training set X learn the distribution p(X )

Unsupervised learning → leverage unlabelled data

Data augmentation, data privacy, density estimation, out of
distribution detection
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Variational Autoencoder (VAE)

Figure: Gaussian VAE model architecture (Source2)

Maximise the ELBO (see [KW13]):

L (θ,φ; x) = −DKL (qφ (z | x) ||pθ(z)) + Eqφ(z|x) [log pθ (x | z)]

2https://blog.bayeslabs.co/2019/06/04/All-you-need-to-know-
about-Vae.html
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Variational Autoencoder on Hilbert spaces

Given function evaluation xki at point ski ([MFB20]):

x̂ke,i = β>i Φ
(
ski

)
(1)

[zµ, zsd ]> = Encoder (φ, βi ) (2)

Z ∼ N
(
zµ, z

2
sdI
)

(3)

β̂i = Decoder (θ,Z) (4)

x̂kd ,i = β̂>i Φ
(
ski

)
. (5)

Where Φ(ski ) = (ϕ1(ski ) . . . ϕB(ski ))T with {ϕj}Bj=1 a set of B
basis functions.
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Data sets

Figure: Sugar
emission spectra.

Figure: Electricity
consumption.

Figure: Simulated
data.

Data set N M

Simulated 4000 100
Sugar spectra 268 571

Gridwatch 532 288

Table: Summary of data sets
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Assessing the model performance

Synthetic sample diversity - Visual comparison

Discriminative comparison - Classifier and maxmimum mean
discrepancy (MMD)

Usefulness of synthetic samples - Application
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Which basis should we choose?

Basis Data M̂MD
2

CEXP Loss Accuracy

Fourier
Simulated GP 0.0001 0.688 0.534
Sugar Spectra 0.036 0.577 0.701

Gridwatch 3.49× 10−22 0.697 0.476

FPCA
Simulated GP 0.011 0.655 0.604
Sugar Spectra 0.002 0.697 0.515

Gridwatch 6.67× 10−15 0.693 0.494

Matérn
Simulated GP 0.001 0.692 0.519
Sugar Spectra 0.045 0.640 0.746

Gridwatch 3.34× 10−10 0.694 0.5

Table: Results of the discriminative comparison.
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Which basis should we choose?

Figure: Synthetic samples for simulated data.

Figure: t-SNE projection for simulated data.



Introduction Background and Theory VAE on Hilbert spaces Simulations Application Conclusion Questions

Which basis should we choose?

Figure: Synthetic samples for sugar spectra data.

Figure: t-SNE projection for sugar spectra.
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A conditional model to battle mode collapse

condition on other knowledge c

qφ(z|x, c) and pθ(x|z, c) as the variational and inference
models of the conditional VAE [SLY15].

The ELBO becomes:

L (θ,φ; x, c) = Eqφ(z|x,c)[log pθ(x|z, c)]−DKL (qφ(z|x, c)‖pθ(z | c)) .

Sugar - spectra modes correspond wavelengths

Gridwatch - modes correspond to day of the week
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A conditional model to battle mode collapse

Data set Basis Model type M̂MD
2

CEXP Loss Accuracy

Sugar

FPCA
Conditional 0.004 0.369 0.792

Standard 0.001 0.416 0.799

Matérn
Conditional 0.019 0.163 0.954

Standard 0.003 0.133 0.96

Fourier
Conditional 0.012 0.055 0.994

Standard 0.007 0.024 0.999

Gridwatch

FPCA
Conditional 5.19× 10−163 0.6932 0.5

Standard 3.8× 10−93 0.6932 0.5

Matérn
Conditional 8.16× 10−198 0.6932 0.5

Standard 7.74× 10−73 0.6932 0.5

Fourier
Conditional 1.64× 10−265 0.6932 0.5

Standard 7.34× 10−70 0.6932 0.5

Table: Simulation results for the discriminative comparison of conditional
and standard models with different basis.
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A conditional model to battle mode collapse

Figure: Synthetic samples with FPCA based basis for sugar data.

Figure: t-SNE projection for sugar data.
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A conditional model to battle mode collapse

Figure: Synthetic samples with Fourier basis for gridwatch data.

Figure: t-SNE projection for sugar data.
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Application

Ash content > 18 ≤ 18

Number of observations 31 237

Table: Classification data set

Figure: Histogram of ash
content in sugar samples.

Figure: Sugar spectra coloured
corresponding to high or low
ash content.
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Application

Figure: Averaged accuracy of 4 independent runs on test set plotted
against the ratio of number of samples containing a high ash content and
number of samples containing a low ash content.
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Conclusions

Basis choice is dependent on data

FPCA based basis yields good sample diversity

Prevent mode collapse by conditioning on classes

Significant improvements by augmenting data set with
synthetic samples

Future Work:

Fully functional VAE

Other bases e.g. B-splines

Method for sparse functional data
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Question - MMD

Given a kernel k and the associated RKHS Hk(X ) we define P the
set of Borel probability measures on X . Furthermore, assuming k
is measurable define Pk ⊂ P as the set of all P ∈ Pk such that∫
k(x , x)

1
2 dP(x) <∞. For P,Q ∈ Pk we define the Maximum

Mean Discrepancy denoted MMDk(P,Q) as follows

MMDk(P,Q) = sup
‖f ‖Hk (X )≤1

∣∣∣∣∫ fdP −
∫

fdQ

∣∣∣∣ .
CEXP:

kc−exp(F ,l)(s, t) = e−
1

2l2
(s−t)2

kcos(F )(s, t)

where F ∈ N and

kcos(F )(s, t) =
F−1∑
n=0

cos(2πn(s − t)) on [0, 1]2.
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Maximum mean discrepancy (MMD)

Enables comparison of two samples on L2(D) with D ⊂ Rd

Can be estimated unbiasedly by the Monte Carlo estimator

M̂MDk (Xn,Yn)2 :=
1

n(n − 1)

n∑
i 6=j

h (zi , zj) ,

where h (zi , zj) = k (xi , xj) + k (yi , yj)− k (xi , yj)− k (xj , yi )
and k is a kernel [WD20].
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Question - Matérn kernel basis

The Matérn is kernel defined by

kM(x, x′) =
21−ν

Γ(ν)

(√
2ν ‖x− x′‖2

σ

)
Kν

(√
2ν ‖x− x′‖2

σ

)
, σ, ν > 0,

where Kν is the modified Bessel function of second kind of order ν
and Γ is the Gamma function.

Translation invariant → Bochner’s theorem

Evaluate the kernel on a dense grid t1, . . . , tn ∈ I
Obtain the Gram matrix defined by Gij = k(ti , tj) for
i , j = 1, . . . , n

Compute the eigenvectors of the Gram matrix

Interpolate eigenvectors to obtain eigenfunctions
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Question - Karhunen Loève expansion

Theorem (Karhunen Loève)

Let {Xt , t ∈ [0, 1] be a zero mean process on L2([0, 1]) with
continuous covariance function γ(s, t). Then

Xt =
∞∑
n=1

ξnen(t), t ∈ [0, 1],

where ξn =
∫ 1

0 Xten(t)dt and {λn, en(t)}∞n=1 are the eigenvalues
and eigenfunctions of Tγ . Furthermore, we have that Eξn = 0 and
E(ξnξm) = λnδn,m.

Here the integral operator Tγ associated with γ is defined by

(Tγf )(t) =

∫ 1

0
γ(t, s)f (s)ds.
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Question - Karhunen Loève expansion

Series converges in L2 to X (t), uniformly in t

Coefficients are random variables and contain information
about the variability around the eigenfunctions

Represent realisations of the stochastic process as realisations
of random coefficients

Uncorrelated coefficients are independent for a Gaussian
processes:

Xt =
∞∑
n=1

√
λnξnen(t),

where {ξn}∞n=1 are independent N (0, 1)
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Question - t-SNE

t-distributed stochastic neighbour embedding

Construct probability distribution over pairs of observations,
similar pairs yield high probability

Construct similar distribution over lower dimensional
representation

minimise Kullback-Leibler Divergence between distirbutions
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