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Abstract

In this project we study Variational Autoencoders on Hilbert spaces as generative models for

functional data and justify its suitability with the Grid Refinement Invariance Principle. We

find that the basis expansion is a key component of our model and can make or break the

suitability of the model for a specific problem. In particular, the choice of basis should reflect

properties of the data set such as smoothness or roughness. The sensitivity of the model regard-

ing the latent dimension is analysed and we find that the model is reasonably robust besides

for the data-driven basis, based on Functional Principal Components. To avoid mode collapse

experienced when training the standard model on a multimodal distribution we propose a gen-

eralisation to the conditional VAE to Hilbert Spaces. To evaluate the performance we apply

the models to three different data sets, one simulated, and two observed in real world applica-

tions (Electricity consumption and chemometrics). The potential significance of the proposed

conditional model is shown by augmenting an unbalanced data set with synthetic samples from

our model. With this approach we manage to significantly increase the test accuracy of a

classifier for the unbalanced classification problem, thus improving its generalisability. Finally,

the conditional model is used in combination with a standard model to generate data from a

bivariate joint distribution.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Functional data, data where an observation is considered a function, arises in many different

fields. Important examples include but are not limited to economics, medicine and chemomet-

rics. For example in a medical study the concentration of a certain protein in the blood of

patient n at time t could be considered as a functional observation xn(t) [KR18].

Figure 1.1: Stock price over time.

With developments in modern technology (among others wearable devices), more and more data

1



2 Chapter 1. Introduction

are collected continuously over a time interval or discretely at many time points in an interval.

This is for example the case in the stock market where price changes occur in fractions of

seconds 1.1. Another example is the electricity demand measured over time. Longitudinal data

is a common type of functional data but not the only one. For example probability distributions

over multiple measurements for each subject or images could be considered as functional data.

The presence of functional data in many real-world problems requires the study of methods

suitable for such data and as a consequence the field of functional data analysis has grown

dramatically in the past decades.

Treating data as functions instead of multivariate vectors can be advantageous as it for example

allows the evaluation at every time point as well as the use of derivatives. However, as we will

see in Chapter 2, another reason is that classical methods can break down when applied to

functional data and care must be taken in the development of new methods. A key principle

for the development of methods for functional data is the so called Grid Refinement Invariance

Principle [LCF15], which ensures robustness under changing dimensionality of the discretised

functional data.

The abundance of functional data and the growing size of data sets require scalable methods

for functional data which are able to capture complicated highly non-linear relationships in the

data. For multivariate data exactly this is being achieved by Deep Learning models. In recent

years the Deep Learning community has made vast progress in applying machine learning

algorithms to solve complex problems (e.g. see [HZRS15], [KTS+14] and [JEP+21]). This

progress is partly due to improved data availability and faster computations but also driven by

advances in learning algorithms and model architectures. The successes of deep learning and

the characteristics of functional data motivate us to explore scalable methods at the intersection

of functional data analysis and deep learning.

In machine learning the area of Generative modelling has received a lot of attention recently

since it can leverage the availability of large amounts of unlabeled data which. The goal is

often data synthesis but can also be density estimation or labelling of data sets. An important

application is data set augmentation to improve the performance of classification models for
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unbalanced classification tasks by upsampling a drastically underrepresented class in the train-

ing data. This is the motivating example for the study of a generative model for functional

data. In particular, inspired by [MFB20] we study Variational Autoencoders on Hilbert spaces

to synthesise functional data and propose the conditional Variational Autoencoder on Hilbert

spaces for the task of upsampling underrepresented classes.

1.2 Recent developments

Very recently attempts have been made to combine Deep Learning methodology with Func-

tional Data. In [Gus16] a framework for training deep neural networks on infinite dimensional

input spaces is proposed. The authors of [HSWH21] propose a Functional Autoencoder for

representation learning on for functional data. [RR21] introduces a new approach for function

on function regression with continuous neurons. Last but not least, in Mishra et al. [MFB20]

proposed πVAE, a generative model for stochastic processes, and use it to perform Bayesian

inference. This is a very active field of research and hence many more recent advancements

aiming at developing deep learning methods for functional data exist and often build on ideas

such as Functional Principal Components or basis representations.

1.3 Contributions

In this thesis we perform an in depth analysis of a novel approach to generative modelling

for functional data inspired by πVAE [MFB20] and suggest several generalisations such as the

conditional Variational Autoencoder on Hilbert spaces.

1. In Chapter 2 we concisely present the theoretical background required for functional

data analysis. A particular focus lies on basis representations of functional data and

Hilbert space theory. We combine this theory with that of deep generative modelling and

Variational Autoencoders.
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2. We study the use of Variational Autoencoders on Hilbert spaces as generative models for

functional data . A comprehensive comparison of several different bases on data sets with

different characteristics is performed in Section 3.4.

3. We transfer the use of inverse auto-regressive flows to Variational Autoencoders on Hilbert

Spaces and provide a comparative analysis in Section 3.6.

4. We propose the use of a conditional model to generate data from multimodal functional

distributions. The applicability of this method is shown by improving the generalisability

of a classifier for an unbalanced classification problem on functional data. Additionally,

we propose the use of the conditional model for multivariate data generation and present

an application to a bivariate functional data set.

1.4 Statement of Originality

The work contained in this thesis is my own work unless stated otherwise.

Lorenz Wolf 03. September 2021, London



Chapter 2

Background Theory

2.1 Functional Data Analysis (FDA)

A well known part of Statistics is multivariate analysis where we generally deal with data

sets consisting of observations xi ∈ Rd, i.e. finite dimensional vectors. On the other hand,

Functional Data Analysis (FDA) is concerned with observations xi(t), t ∈ T (with T and index

set, commonly a real interval) that are considered to be functions characterised by infinite

degrees of freedom. Functional Data has gained more and more attention, partly due to the

progress in data collection methods allowing high frequency data of for example stock prices,

but also audio recordings or images can be considered as functions to exploit certain properties.

The term functional data analysis was introduced by Ramsay and Dalzell in 1991 [RD91]. Since

then the field of FDA benefited from a lot of work. In the following sections we cover the basic

ideas of FDA, Hilbert space theory which is required to understand a key model of functional

data, and several key techniques and results.

Having introduced FDA as the analysis of curves and surfaces it is important to remind ourselves

that in reality the actual data are discrete in most cases. More specifically each observation

consists of multiple evaluations of a function at for example different time points. Thus, when

data is described as being functional it is referred to the intrinsic structure of the data, i.e. an

5



6 Chapter 2. Background Theory

underlying function which gives rise to the data. It is therefore rather a difference in how the

data is treated than an actual difference in the data between multivariate analysis and functional

data analysis. At first this may seem like adding unnecessary constraints and complexity to

the problem, but there are several advantages of adopting a functional data approach.

Firstly, treating each observation as several evaluations from an underlying function allows

the evaluation at every point in time. Secondly considering rates of change is a powerful tool

in FDA [RS05]. Furthermore, in many cases it is reasonable to assume smoothness of the

functions which adds valuable information as evaluations close to each other can be expected

to have similar function values.

Finally, methods for multivariate data can break down for functional data due to the high

dimensionality of the observations compared to the number of observations in the data set. To

illustrate this we provide the example given in Chapter 1 of [Dun21].

Example 2.1. Consider modelling a sample X1, . . . ,XN as i.i.d. realisations of a stochastic

process X(t) with E(X2(t)) <∞. Aiming at testing whether the mean function m(t) = E(X(t))

is equal to 0 we perform a standard Hotelling’s T-squared test based on the sample mean x̄ ∈ RM

of multivariate measurements x1, . . . ,xN . To compute the test statistic x̄T Σ̂−1x̄ we need to

compute the sample covariance matrix Σ̂. However, for functional data it is common to have

M >> N in which case the sample covariance matrix is singular. It follows that we require

methods which are robust for M and are still reliable as M →∞.

This idea of robustness is described by the Grid Refinement Invariance Principle (GRIP)

which is fundamental to Functional Data Analysis [LCF15].

Definition 2.1 (GRIP). GRIP states that methods for functional data should be robust under

changes of the dimension of the representation as long as the dimension is large enough to give

an accurate representation.

Consequently the two main approaches for developing methods for functional data are to either

devise a method for true functional data and project it into finite dimensions or to devise a

method for discrete data and ensure that the method is well defined as M →∞ [Dun21].
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In the literature functional data is categorised into dense and sparse functional data. These

categories refer to the grid on which the evaluations are available. No strict approach for

categorising functional data as dense or sparse exists, but attempts have been made in [ZW16].

Since high available high frequency data falls in the dense category and classical methods

struggle for large M >> N the focus in this report lies on dense functional data. In general the

’power’ of functional data analysis depends heavily on the density of evaluation points [RS05].

Intuitively, in areas of high curvature we require a higher density in order to be able to get a

good picture of the underlying curve.

2.1.1 Functional Data as Stochastic Processes

To make the notion of functional data mathematically precise let (Ω,F ,P) be a probability

space. Consider a stochastic process characterised by the collection

{X(t, ω) : t ∈ I, ω ∈ Ω}

where X(t, ·) is an F -measurable function on the sample space Ω. For simplicity, the omega

argument is suppressed in the following.

A sample path or a realisation for the process is the collection of real numbers obtained when

X(t) is observed for every t ∈ I. In Functional Data Analysis the index sets of the processes

giving rise to the data are some interval of the real line or more generally Rd
)
.

In reality the infinite dimensional functional data are not observed, rather a discretised version

of it, e.g. evaluations of the function at several points in time. Thus, typically data sets consist

of samples of the form

{x1, . . . ,xn} , where xi = (Xi (tj))
M
j=1 , for t1, . . . , tM ∈ I

I.e. n sample paths from a stochastic process with each path being evaluated at M locations. It

is important to note that the points at which each sample path is evaluated could be irregularly
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spaced and be different for each path. Furthermore it might be the case that the number of

evaluations is not the same for all sample paths in the data set.

Before moving on to Hilbert space theory, a very elegant and practical framework to deal with

functional data, it is worth to briefly note that common estimates of the mean and covariance

functions, namely the sample mean function and sample covariance function follow intuitively

from the scalar variable case by taking the pointwise mean

X̄N(t) =
N∑
n=1

Xn(t)

and similarly for the estimate of the covariance function

ĉ(s, t) =
1

N − 1

N∑
n=1

(
Xn(t)− X̄N(t)

) (
Xn(s)− X̄N(s)

)
.

2.1.2 Hilbert Space Theory

Hilbert spaces are a very useful framework for working with functions. We assume the reader

is familiar with notions of vector spaces, inner products and completeness for metric spaces.

Definition 2.2 (Hilbert Space). A Hilbert space is a complete inner product space.

Of particular interest for functional data analysis is the space L2([0, 1]).

Definition 2.3. Define L2([0, 1]) to be the space of all Lebesgue measurable real-valued functions

f such that ∫ 1

0

f 2(t)dt <∞.

This is a Hilbert space with the inner product defined as

〈f1, f2〉 =

∫ 1

0

f1(t)f2(t)dt

and the vector space operations (f1 + f2)(t) = f1(t) + f2(t) and (λf1)(t) = λf1(t).
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The inner product space properties can be easily verified. To show completeness of L2([0, 1])

Alkhiezer and Galzman [AG93] note that a sequence of functions which is Cauchy {fm(t)}∞m=1

has a subsequence for which

∫ 1

0

∣∣fkr+1(t)− fkr(t)
∣∣2 dt < 1

8r
(r = 1, 2, 3, . . .).

It can then be shown that this subsequence converges to a function f(t) on a set I? ⊆ [0, 1],

equivalently almost everywhere on [0,1]. Using uniform convergence of said subsequence on

subsets Is (an increasing sequence with lim
s→∞

Is = I?) and the Cauchy property the limit can be

taken through the integral. It follows that f is indeed in L2([0, 1]) and

lim
m→∞

∫ b

a

|fm(t)− f(t)|2 dt = 0,

which completes the sketch of the proof. For a full proof the reader is referred to [AG93]. This

can be extended to the space L2(D) where D is any compact subset of Rd. For many problems

in FDA the space L2(D) is too large and we want to exploit smoothness so it is useful to restrict

ourselves to so called Sobolev spaces.

Definition 2.4. Denote by HK([0, 1]) the space of functions f ∈ L2([0, 1]) whose (weak) deriva-

tives up to order K are also contained in L2([0, 1]).

This is a Hilbert space with the inner product defined by

〈x, y〉HK =
K∑
k=0

∫
D(k)x(t)D

(k)y(t)dt,

where D(k)x denotes the order k weak derivative of the function x [Dun21].

2.1.3 Representing functions through basis expansions

With the number of evaluations per observation often being large it is of interest to concisely

summarize the information contained in one observation. A common technique to achieve this

is to decompose the function into a linear combination of basis functions, and then characterise
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the function by the resulting (infinite) vector of coefficients. For example the common func-

tional normal linear regression model makes use of basis expansions to project the optimisation

problem from functions to scalar coefficients [KR18].

Definition 2.5. A Hilbert space H is called separable if there exist countable {e1, e2 . . .}, sat-

isfying 〈ej, ej〉 = 1 ∀j and 〈ej, ei〉 = 0 ∀j 6= i, such that every x ∈ H can be written as

x =
∞∑
j=1

ajej.

Then {e1, e2 . . .} is called an orthonormal basis for H

In particular we have that for a separable Hilbert space the coefficients in the above sum are

defined by aj = 〈x, ej〉. Furthermore, Parseval’s theorem states that

〈x, x〉 =
∞∑
j=1

〈x, ej〉.

This can readily be applied to the space L2([0, 1]). In practice the infinite sum is often truncated

after the B − th term for a sufficiently large B. Thus, we approximate the linear combination

of the full basis by

x(t) ≈
B∑
k=1

ckek(t),

where ck =
∫
x(t)ek(t)dt and {ek(t)}Bk=1 are some standard collection of basis functions. The

function can then be represented by the vector of coefficients (c1, . . . , cB). This transfers the

analysis of infinite dimensional functions to finite dimensional vectors. Here B is also called

the dimension of the basis expansion. With B = M (M the number of evaluations) this

corresponds to exact interpolation. The smaller B the smoother the interpolation hence B is

often treated as additional parameter [RS05]. The choice of basis is very important. For a well

chosen basis the coefficients themselves are interesting descriptors of the data and smaller B

allows a reasonable interpolation of the data [RS05]. In the following paragraphs we introduce

several orthonormal bases for the space L2([0, 1]).
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Fourier basis

One of the most well known bases is the Fourier basis, which has many applications in signal

processing and data analysis.

Definition 2.6. The Fourier basis is given by the functions

e1(t) = 1, e2(t) =
√

2sin(2πt), e3(t) =
√

2cos(2πt).

The Fourier basis can easily be generalised to other interval lengths. Due to its periodic nature

as a composition of sine and cosine functions it is especially widely used for periodic data. A

benefit of the Fourier basis is its very efficient computation of the coefficients with the FFT

algorithm [CT65] when M is even and evaluation points are equally spaced.

The strength of this basis lies on stable functions, while it struggles to interpolate functions

with strong local features. The expansions obtained by the Fourier basis are generally smooth

and hence may be inappropriate for data subject to discontinuities [RS05]. Consequently, it is

often of interest to also consider other bases.

Wavelet basis

While basis expansions with for example the Fourier basis only allow the analysis in the fre-

quency domain wavelets stand out by enabling the analysis at different scales, also called mul-

tiresolution analysis. In other words, it allows us to not only identify frequencies in the signal

but also when those frequencies are present. Consequently and due to a strong mathematical

background combined with fast computation wavelets have found various applications in for

example data compression, noise removal and pattern recognition (see e.g. [BB94] for a famous

example) .

To obtain the continuous wavelet transform we first need to define the mother wavelet ψ. In
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order to be a mother wavelet the Fourier transform ψ̂ of a function ψ must satisfy

∫ ∞
−∞

|ψ̂(ω)|2

|ω|
dω <∞

which is also called admissibility condition [Pat09]. This ensures that the mother wavelet

vanishes at −∞ and∞ and changes sign. In fact it is thanks to the decay that wavelets extract

information in the time domain as well. The mother wavelet is then dilated and translated into

functions

ψjk(t) =
1√
|k|
ψ

(
t− j
k

)
.

A wide range of mother wavelets exists, but all of them are designed to ensure dilations and

translations are orthogonal and represent an orthonormal basis. The wavelet transform maps

the function x(t) ∈ L2(R) to the time-scale space by

Wx(j, k) =

∫ ∞
−∞

ψjk(t)x(t)dt.

In reality we are not able to use the complete wavelet transform but rather specify scales and

dilations so that the continuous wavelet transform yields a two dimensional array. In this report

we use the Ricker wavelet defined by

ψ(t) =
2√

3σπ1/4

(
1−

(
t

σ

)2
)
e−

t2

2σ2

and with an example visualised in Figure 2.1.

A key strength of wavelets is that due to the different scales wavelets are less affected by discon-

tinuities in the signal compared to for example Fourier transforms[RS05]. This follows from the

fact that a discontinuity will only affect the wavelets which are non-zero at the discontinuity.

We note that due to problems with the implementation of continuous wavelet transform and the

use in combination with a convolutional Variational Autoencoder the discrete wavelet transform

with the Daubechies 2 wavelet has been implemented instead
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Figure 2.1: Visualising the Ricker wavelet or also called Mexican hat wavelet.

Thus far we have only discussed expansions that are obtained by representing the original

function as a linear combination of a set of pre-specified basis functions such as the Fourier

basis.Another approach is to design a basis that encodes the structure of the data by for example

computing it empirically from the data at hand. The optimal orthonormal basis to represent

data in can be found via Functional Principal Components.

2.1.4 Karhunen Loève Expansion and Functional Principal Compo-

nents

First, recall that for any f ∈ L2(D) with an orthonormal basis {en}∞n=1 we can write

f(t) =
∞∑
n=1

fnen(t),

were fn =
∫
D f(t)en(t)dt. Also note that the notion of eigenvalues and eigenfunctions for an

operator on a Hilbert space is as expected.

Definition 2.7. Let L be a linear operator on a Hilbert space H. Then λ is called an eigenvalue

of L and x ∈ H is the corresponding eigenfunction if Lx = λx.
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A key result for stochastic processes and in FDA is the Karhunen Loève theorem which gives

a similar expansion for a stochastic process. The idea behind it being that we can express

a stochastic process as a combination of random variables and eigenfunctions of an integral

operator to be defined below.

First let us define the general Integral operator TK associated with kernel K by

(TKf)(t) =

∫ 1

0

K(t, s)f(s)ds.

Then Mercer’s theorem describes how to obtain a basis induced by a kernel K satisfying certain

properties.

Theorem 2.1 (Mercer’s theorem). Let K be a continuous symmetric non-negative definite

kernel. Then there is an orthonormal basis {en}n∈N of L2([0, 1]) consisting of eigenfunctions

of TK such that the corresponding eigenvalues {λn}n∈N are non-negative. The eigenfunctions

corresponding to non-zero eigenvalues are continuous on [0, 1] and K has the representation

K(s, t) =
∞∑
n=1

λnen(s)en(t)

where the convergence is absolute and uniform.

More specifically, let {Xt, t ∈ [0, 1] be a zero mean process on L2([0, 1]) with continuous

covariance function γ(s, t) = Cov(Xs, Xt). Define the integral operator Tγ associated with γ

by

(Tγf)(t) =

∫ 1

0

γ(t, s)f(s)ds.

We note that the covariance function is symmetric and non-negative. Hence in combination with

the continuity assumption applying Mercer’s theorem to γ(t, s) yields that the eigenfunctions

of Tγ form an orthonormal basis of L2([0, 1]). Furthermore, Tγ has a sequence of non-negative

eigenvalues. This is linked to stochastic processes via the Karhunen Loève theorem.

Theorem 2.2 (Karhunen Loève). Let {Xt, t ∈ [0, 1] be a zero mean process on L2([0, 1]) with
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continuous covariance function γ(s, t). Then

Xt =
∞∑
n=1

ξnen(t), t ∈ [0, 1],

where ξn =
∫ 1

0
Xten(t)dt and {λn, en(t)}∞n=1 are the eigenvalues and eigenfunctions of Tγ. Fur-

thermore, we have that Eξn = 0 and E(ξnξm) = λnδn,m.

The series obtained through the Karhunen Loève expansion converges in L2 to X(t), uniformly

in t. The convergence follows by Mercer’s theorem and a full proof can be found in [Pav18].

Note that in the Karhunen Loève expansion the coefficients ξn are in fact random variables

containing information about the variance of the stochastic process around the eigenfunctions.

It follows that realisations of the stochastic process can be understood as realisations of the

random coefficients {ξn}.

In the general case of the Karhunen Loeve expansion the random variables {ξn} are only

uncorrelated, which can still lead to very complex dependencies and the expansion does not

yield a practical scheme for simulation. However, note that applying the Karhunen Loève

expansion to a Gaussian second-order process Xt with continuous covariance function yields

{ξn}, which are the time integrals of a Gaussian process and consequently Gaussian random

variables. Since jointly distributed, uncorrelated Gaussian random variables are independent,

the Karhunen Loève expansion becomes

Xt =
∞∑
n=1

√
λnξnen(t),

where {ξn}∞n=1 are independent N (0, 1).

Thus, Gaussianity is commonly assumed since independence is required for many theoretical

results and allows simple methodology [DH10].

In practice, we are interested representing data using only a finite number of basis functions.

Therefore it is important to choose this set of finite basis functions to adequately capture the

variability and structure of the data. Functional Principal Components provides an approach
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to obtain an optimal (in an appropriate sense) basis.

Functional Principal Components (FPCA)

FPCA is a powerful tool in FDA that is very similar to PCA for multivariate data. As in the

multivariate case, with FPCA we aim to investigate the modes of variation of functional data.

Framing the choice of B basis functions to represent the data in as an optimisation problem

FPCA allows us to obtain the corresponding optimal basis.

Let X be a zero mean square integrable random variable in L2([0, 1]) and denote the inner

product of L2([0, 1]) by 〈·, ·〉. Then consider the problem of finding an orthonormal basis of

B-elements which best approximates the random variable. Therefore, we aim to minimise the

loss function for a given orthonormal basis u1, . . . , uB defined by

S(u1, . . . , uB) = E

∣∣∣∣∣
∣∣∣∣∣X−

B∑
i=1

〈X, ui〉ui

∣∣∣∣∣
∣∣∣∣∣
2

.

Due to the orthonormality of the basis functions minimising the loss is equivalent to maximising∑B
n=1〈Tγun, un〉 where Tγ is as defined in Theorem 2.2. This however is achieved by choosing

u1, . . . , uB to be the eigenfunctions of Tγ corresponding to the B largest eigenvalues. Thus,

FPCA is really a truncated Karhunen Loève expansion.

Since in reality we observe discretised versions of the underlying stochastic process of the form

{x1, . . . ,xn} , where xi = (Xi (tij))
M
j=1 , for ti1, . . . , tiM ∈ I

which means that we need to estimate the eigenfunctions from the data. For dense data this

is commonly achieved by approximating the covariance function by the empirical covariance

function [BHK09], then computing the estimated eigenfunctions (in practice eigenvectors that

can be interpolated if needed). For sparse data more care is required and often smoothing

methods are applied first (e.g. see [HMW06], [YMW05]).
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An advantage of FPCA is that we can choose the dimensionality of the expansion based on the

percentage of variability explained of the total variability, often taken to be 0.95. This allows

an automated choice of the dimensionality B.

FPCA has been applied in many different areas which range from linguistics [ACE10] to time

series data in finance [BH05] (more examples are given in [RS02]). It has also been used in

medicine for example in [VGS05] the authors apply FPCA to fMRI scans. FPCA is especially

popular because of its use for dimensionality reduction and also visualisation.

2.1.5 Basis construction through kernels

We have already encountered kernels in the special case of the covariance function. In this

subsection we consider kernels in general and outline the use of kernels to construct a basis.

Kernels form an important part in statistical learning and machine learning. They are especially

interesting since they can be used for several types of data, importantly for us also functional

data [MFSS16]. The so called kernel trick has been successfully applied to methods such as

PCA and Support Vector Machines [CV95] and can generally be applied to any algorithm that

can be expressed in the form of an inner product 〈x, y〉.

Specifically if an algorithm depends on inputs only via 〈x, y〉 it is often of interest to introduce

non-linearity. In general this can be done by applying a feature map ϕ : X → F , mapping the

inputs into a higher dimensional feature space F . We then evaluate the inner product in F by

k(x, y) = 〈ϕ(x), ϕ(y)〉F

where 〈·, ·〉F denotes the inner product in F .

Definition 2.8 (non-negative definite kernel). A function k : X × X → R is a non-negative

definite kernel if it is symmetric, i.e., k(x,y) = k(y,x), and:

n∑
i,j=1

cik (xi,xj) c
?
j ≥ 0
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for any n ∈ N, {xi}ni=1 ∈ X and any c1, . . . , cn ∈ C.

The following theorem with proof in [Aro50] makes explicit when such a kernel trick can be

applied.

Theorem 2.3. k is a non-negative definite kernel if and only if there exists a Hilbert space F ,

and a function ϕ : X → F such that ∀x, y ∈ X , k(x, y) = 〈ϕ(x), ϕ(y)〉F .

So for any non-negative definite kernel we can find a corresponding feature space and feature

map. It can be shown that the feature space and feature map are unique up to isomorphisms

[Aro50]. Furthermore, such a kernel defines a reproducing kernel Hilbert space (RKHS) H. In

fact H is the feature space F . The canonical feature map is given by ϕ(x) = k(x, ·). This yields

the so called reproducing properties, for all f ∈ H and all x ∈ X :

〈k(·, x), f〉 = f(x) and 〈k(·, x), k(·, y)〉 = k(x, y)

Definition 2.9. A Hilbert space H of functions is a reproducing kernel Hilbert space (RKHS)

if the evaluation functionals Lx[f ] defined as Lx[f ] = f(x) are bounded, i.e., for all x ∈ X

there exists some C > 0 such that

|Lx[f ]| = |f(x)| ≤ C‖f‖H, ∀f ∈ H

Note that in practice it can often be hard to derive the feature map explicitly. Many dif-

ferent types of kernels exist, some of the more popular kernels include the Gaussian, Square

exponential and Matérn kernels. In this report we consider the Matérn kernel defined by

kM(x,x′) =
21−ν

Γ(ν)

(√
2ν ‖x− x′‖2

σ

)
Kν

(√
2ν ‖x− x′‖2

σ

)
, σ > 0, ν > 0

where Kν is the modified Bessel function of second kind of order ν and Γ is the Gamma function.

We choose the Matérn kernel for the following reason: While for example the Gaussian kernel

defines an RKHS whose elements are infinitely many times differentiable, i.e. very smooth, the
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Matérn kernel defines a more flexible RKHS. In fact the RKHS is a Sobolev space (Definition

2.4) where the number of derivatives (i.e. smoothness) is controlled by the parameters of

the Matérn kernel. Controlling the smoothness can be understood as managing the trade-off

between bias and variance. Learning smoother functions leads to higher bias but less data is

required to learn the function, while rougher functions have less bias but more data will be

needed to learn them.

It is important to note that the Matérn kernel is translation invariant since it only depends on x

and x′ through x−x′. Translation invariant non-negative definite kernels can be characterised

by Bochner’s theorem, which we state for kernels on Rd below.

Theorem 2.4 (Bochner’s theorem). A complex-valued bounded continuous kernel k (x,x′) =

ψ (x− x′) on Rd is positive definite if and only if there exists a finite non-negative Borel measure

Λ on Rd such that

ψ (x− x′) =

∫
Rd
e
√
−1ω>(x−x′)dΛ(ω)

Bochner’s theorem ensures that when properly scaled the Fourier transform of a translation

invariant kernel is a proper probability distribution. Bochner’s theorem provides the theory

behind Random Fourier Features a technique in machine learning to approximate the feature

map [RR08].

As with the covariance function for functional principal components, Mercer’s theorem (The-

orem 2.1) ensures the existence of the kernel induced basis. In practice, where discretised

versions of the data are observed, to obtain a basis via the Matérn kernel we first evaluate the

kernel on a dense grid t1, . . . , tn ∈ I and obtain the Gram matrix defined by Gij = k(ti, tj)

for i, j = 1, . . . , n. The basis is then obtained by computing the eigenvectors of the Gram

matrix which can be interpolated to obtain eigenfunctions. For more details see Appendix A.

The absolute and uniform convergence in Mercer’s theorem yields that the infinite dimensional

RKHS can be approximated by finite dimensions.
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2.1.6 Rough path theory and signatures

Recently the signature transform has seen a rise in machine learning applications. The study

of rough paths and signatures dates back to K. T. Chen who developed theory for piecewise

smooth paths [Che77].

In this section we restrict ourselves to piecewise differentiable paths, however, the theory can be

extended to paths with bounded variation. By path we mean a continuous map X : [a, b]→ Rd

with the coordinate paths (X1
t , . . . , X

d
t ), where each X i is a real valued path. Now for any

integer k ≥ 1 and indexes i1, . . . , ik ∈ {1, . . . , d} we can iteratively define

S(X)i1,...,ika,t =

∫
a<s<t

S(X)i1,...,ik−1
a,s dX ik

s . (2.1)

or equivalently

S(X)i1,...,ika,t =

∫
a<tk<t

· · ·
∫
a<t1<t2

dX i1
t1 . . . dX

ik
tk
. (2.2)

Then the signature of the path X is given by the sequence

S(X)a,b =
(
1, S(X)1

a,b, . . . , S(X)da,b, S(X)1,1
a,b, S(X)1,2

a,b, . . .
)

(2.3)

with the superscripts running along the set

W = {(i1, . . . , ik) | k ≥ 1, i1, . . . , ik ∈ {1, . . . , d}} .

In practice we often consider the truncated signature up to some depth m ∈ N . Furthermore,

note that since we only observe discretised versions of the underlying path interpolation is

applied to join the evaluations [Rei17].

An important property causing interest in the signature transform is its invariance under time

reparameterisations [CK16]. One of the only pieces of information that is lost when taking

the signature transform is the speed at which a path is traversed. This can in fact be a
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great advantage since for example in pattern recognition or computer vision the only thing of

interest is the resulting curve obtained by traversing on the path. Furthermore, by definition it

encodes global features of the path. Additionally, the length of the signature is not dependent

on the number of evaluations available per path. The length of the signature of a path on

Rd up depth m has dm terms. This can be an advantage but also a drawback. The more

detail we want to capture, the more levels of the signature are required which can lead to large

feature vectors. Finally, importantly any continuous function of the path can be arbitrarily well

approximated by a linear function of its signature [BKA+19] providing a strong motivation for

the use of the signature transform for feature extraction. Consequently the signature transform

has been applied in Machine Learning among others in motion recognition [LZJ17] and Finance

([LNA19], [KLA19]).

The signature transform is similar to a basis expansion, but it does not require the choice of a

basis so is non-parametric.

In [HL05] it is shown that the signature of paths with bounded p-variation is unique (extended

from piecewise regular paths). This raises the question whether the signature can be inverted

to obtain the corresponding path. The inversion of the signature transform is a complicated

topic. The theory for the inversion is studied in [LX18] and then further analysed in [Gen17].

A recent advancement is the insertion algorithm [CL19]. Motivated by the signature of simple

paths it aims to reverse engineer the path by combining information from adjacent levels of

the signature. Specifically, the algorithm is based on approximating higher level terms from

lower level terms in the signature. While it works well in theory the signature inversion via the

insertion algorithm can only determine an m + 2 point approximation to a path based on its

signature up to depth m (where the first point is required as input to map the reconstructed

path onto the original).

Another approach to path reconstruction from the signature exploits the fact that the signa-

ture transform is differentiable [BKA+19]. Thus, given the truncated signature SigN(x) of an
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unknown x ∈ S(Rd) we can apply gradient descent to minimise the loss

L(y; x) =
∥∥SigN(y)− SigN(x)

∥∥2

2
for y = (y1, . . . , yn) ∈ S

(
Rd
)
.

An exciting idea is presented in [BKA+19] where the signature transform is embedded into deep

learning architectures as a layer itself. A spin-off of resulted in the Signatory package [KL20]

which enables efficient computation of the signature and also contains an implementation of

the insertion algorithm for signature inversion.

2.1.7 Maximum mean discrepancy

Closely related to the theory discussed on kernels and hilbert spaces is the maximum mean

discrepancy (MMD). The MMD is an integral probability metric [Mül97] which can be used to

measure the discrepancy between to samples. In [WD20] a kernel two sample test for functional

data which relies on the MMD is proposed. We follow this approach for our experiments in

Chapter 3. Given a kernel k and the associated RKHS Hk(X ) we define P the set of Borel

probability measures on X . Furthermore, assuming k is measurable define Pk ⊂ P as the set

of all P ∈ Pk such that
∫
k(x, x)

1
2dP (x) < ∞. For P,Q ∈ Pk we define the Maximum Mean

Discrepancy denoted MMDk(P,Q) as follows

MMDk(P,Q) = sup
‖f‖Hk(X )≤1

∣∣∣∣∫ fdP −
∫
fdQ

∣∣∣∣ .
Using the kernel trick it can be shown that the MMD can simply be obtained by an inner

product on the RKHS which only involves expectations and can be unbiasedly estimated by a

Monte Carlo estimator such as

M̂MDk (Xn, Yn)2 :=
1

n(n− 1)

n∑
i 6=j

h (zi, zj) ,

where h (zi, zj) = k (xi, xj) + k (yi, yj)− k (xi, yj)− k (xj, yi) [WD20]. Note the above estimator

can be straightforwardly generalised to unbalanced sample sizes.
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Several kernels can be considered but based on simulations performed in [WD20] we use CEXP,

the SE-T kernel with T based on the cosine-exponential kernel. For F ∈ N define

kcos(F )(s, t) =
F−1∑
n=0

cos(2πn(s− t)) on [0, 1]2,

then the cosine-exponential kernel is

kc−exp(F,l)(s, t) = e−
1

2l2
(s−t)2kcos(F )(s, t)

In addition, due to dependence on the kernel we also report results with the squared-exponential

T kernel with T (x) = (x, x2).

Definition 2.10. For T : X → Y the squared-exponential T kernel (SE − T ) is defined as

kT (x, y) = e−
1
2
‖T (x)−T (y)‖2Y .

As shown in the simulations in [WD20] the MMD is a powerful tool for comparing two distri-

butions supported over a real, separable Hilbert space such as L2(D) with D ⊂ Rd.

2.2 Deep Learning

2.2.1 Generative Modelling

Generative versus discriminative modelling divides machine learning. In discriminative mod-

elling the goal is to learn a predictor given an observation, one common example is learning the

classification of an observed image as dog or cat with for example a deep neural network. On

the other hand, generative models learn the simulate the generation process of the data in the

real world [KW19], i.e. they learn to model the distribution of the training samples. Intuitively

speaking the model is trained to generate data which can’t be told apart from the training

data. More precisely generative models are trained so that the model samples x̃ ∼ pθ(·) come
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from the same distribution as that from which the training data is truly sampled, x ∼ pd(·).

Generative models are trained via unsupervised learning which comes with the great advan-

tage of learning from unlabeled data and thus simplifies the collection of data considerably.

However, regardless of the decreased effort during data collection, unlabelled data still con-

tains valuable information. Generative modelling extracts this information and leverages it.

Generative models have various applications including image/ audio/ video synthesis such as

text-to-image conversion [ZXL+16], super-resolution [LTH+16] and speech or music synthesis.

Furthermore, generative models can be applied in density estimation and out of distribution

detection to identify anomalies [DHL19].

One might ask why the generation of synthetic data and generative modelling in general is

of importance. The applications of generative models are immense. One key aspect is Data

augmentation. When training classifiers or other models it can be very useful to augment the

data set before training in order to avoid biases or increase the performance of a classifier. A

great demonstration of this approach can be found in [FADK+18] where the authors achieve a

significant improvement of the trained classifier through synthetic data augmentation. While

data augmentation can be extremely useful, in certain industries such as finance and medicine

it is often not possible to share data at all due to privacy issues. However, synthetic data can

be shared with out any privacy concerns and ideally still carries most information contained in

the original data set. Additionally, generative models are applied in semi-supervised learning

and neural network pre-training for problems where the collection of labeled data is expensive

see for example [GDCS19].

The most common types of generative models are Energy-Based models (EBM)[SK21], Vari-

ational Autoencoders (VAE) [KW13], Generative Adversarial Netowrks (GAN) [GPAM+14],

Autoregressive models, and Normalising Flows ([KPB19], [PNR+19]). Since the beginning of

Generative modelling in the 1980s Energy-Based models have been improved upon by advances

in deep learning architectures and the availability of larger data sets. Most of the improvements

are based on the introduction of latent variables that are easily sampled and then transformed.

However, in most cases this is an intractable problem which lead to development of approximate
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inference techniques and applications of methods from for variational inference [JGJS99]. For a

good overview of generative modelling and a comparison of the most common models we refer

to [BTLLW21].

In order for generative models to be applicable to real world problems they are usually required

to satisfy the following criteria [RMW14]:

1. Flexibility to allow the model to capture complex structures in the data.

2. Efficient generation of synthetic data from the inferred model.

3. Computational tractability and scalability to high dimensional data.

A key issue with EBMs is the slow, even intractable, training for high dimensional problems

[LCH06], which is related to slow mixing times of MCMC methods required for sampling

[BTLLW21]. This is where Variational Autoencoders come in. VAEs have gained popular-

ity due to their ability to efficiently generate samples and yet yielding good sample diversity

[BTLLW21]. In the following sections we will describe VAEs and the underlying inference

process in detail. We will give an overview of recent improvements to the vanilla VAE and

in particular describe π-VAE, a newly proposed extension to encode priors on function spaces

[MFB20].

2.2.2 Variational Autoencoder

Variational Autoencoders were first proposed in [KW13] and [RMW14] and since have found

various applications and have been improved by several generalisations and extensions some of

which will be discussed in later subsections.

Assume the data X = {xi}Ni=1 consists of N i.i.d. samples of the random variable x, which is

assumed to be truly distributed according to x ∼ pd(x). We choose to model it by pθ(x), where

θ are the model parameters. From the i.i.d assumption it follows that the log-likelihood of the

data given the model and parameters is

log pθ(X) =
∑
x∈X

log pθ(x). (2.4)
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Maximising the likelihood or equivalently the log-likelihood, also called Maximum Likelihood

Estimation (MLE), is a frequentist approach and commonly applied to fitting probabilistic

models.

Based on equation 2.4 we will only consider the likelihood of a single data point x (dropping

the subscript i) in the following.

VAEs make use of latent variables, denoted by z, by first mapping the inputs into the latent

space via the encoder and then reconstructing the input from the latent space representation

via the decoder. Thus, the full model can be summarised by pθ(x|z) with the prior pθ(z) and

the posterior pθ(z|x). The problem with latent variable models is that optimising the model via

maximum likelihood is intractable. This is due to the graphical model representing the joint

distribution

pθ(x, z) = pθ(x|z)pθ(z) (2.5)

which yields the marginal distribution in the form

pθ(x) =

∫
pθ(x, z)dz, (2.6)

commonly called the marginal likelihood. Unfortunately, for slightly more complex models, such

as neural networks with a non-linear hidden layer, this integral is intractable or no convenient

estimator exists ([GBC16], [KW19]). Thus, approximate inference is needed.

Evidence Lower Bound (ELBO)

Instead of maximising the intractable likelihood, the true posterior pθ(z|x) (intractable) is

approximated with a learnt function qφ(z|x), also called the recognition model [KW13].

An important tool in Machine Learning and approximate inference is the Kullback-Leibler (KL)

divergence, which measures the difference between two probability distributions.

Definition 2.11 (KL Divergence). Given two separate probability distributions P (x) and Q(x)
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over the same random variable x, the KL divergence is defined by

DKL(P‖Q) = Ex∼P

[
log

P (x)

Q(x)

]
= Ex∼P [logP (x)− logQ(x)]. (2.7)

Having defined the KL divergence note that each term in the sum in Equation 2.4 can be

written as

log pθ (x) = DKL (qφ (z | x) ||pθ (z | x)) + L (θ,φ; x) , (2.8)

where L (θ,φ; x) is the evidence lower bound (ELBO), also called variational lower bound on

the marginal likelihood of a data point x, given by

L (θ,φ; x) = Eqφ(z|x) [− log qφ(z | x) + log pθ(x, z)] (2.9)

= −DKL (qφ (z | x) ||pθ(z)) + Eqφ(z|x) [log pθ (x | z)] (2.10)

[KW13]. Using Jensen’s inequality it can be shown that the KL divergence is non-negative.

Hence it follows from Equation 2.8 that

log pθ (x) ≥ L (θ,φ; x) .

Notice that the ELBO is independent of the intractable true posterior and only depends on

the approximate posterior. Thus, instead of optimising the marginal likelihood the ELBO is

optimised w.r.t the variational parameters φ and the inference parameters θ. Therefore, it is

required to back-propagate gradients through the stochastic sampling layer z̃ ∼ qφ(z|x). Esti-

mating the gradient of the ELBO w.r.t. the inference parameters is straight forward. However,

the estimation of the gradient w.r.t. the variational parameters requires more attention. The

naive Monte Carlo estimator of the gradient of the ELBO is not suitable for learning as it

exhibits high variance so that an alternative estimator is needed [PBJ12].

Before discussing the optimisation consider the definition of the ELBO. In Equation 2.10 the

KL divergence term can be interpreted as a regulariser aiming to bring the approximate poste-

rior qφ (z | x) close to the prior distribution pθ(z) [GBC16]. The second term is known as the
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reconstruction loss between the model reconstructions and the original inputs. On the other

hand, considering Equation 2.8 it is clear that maximising the ELBO brings the approximate

posterior closer to the true posterior, i.e. improves the encoder. Simultaneously, it approx-

imately maximises the marginal likelihood, as required [KW19]. Furthermore, note that the

parameters φ and θ are shared between all data points. This approach is called amortised

inference (e.g. see [HBWP12]) and enables the model to scale to large data sets.

Reparameterisation Trick

In the case of continuous z the reparameterisation trick allows back-propagation through the

sampling layer, i.e. computing the gradients w.r.t. the variational parameters φ. Instead

of sampling directly from qφ(z|x) a noise variable ε is sampled from a suitable prior ε ∼

p(ε) and then transformed via a differentiable function giving z = gφ(ε,x) [KW13]. This

reparameterisation allows the estimation of gradients of expectations of a function f(z) with

respect to qφ(z|x) with Monte Carlo estimates [KW13]. In the case where g(.) is invertible

using a change of variables we have that Eqφ(z|x)[f(z)] = Ep(ε)[f(z)]. Hence aggregating over

several samples we can use the Monte Carlo estimator Eqφ(z|x)[f(z)] ' ∇φ

∑L
`=1 f(z`), where

z` for ` = 1, . . . , L is transformed noise ε ∼ p(ε) [KW19]. Using this reparameterisation the

Monte Carlo estimator of the ELBO of a data point x is given by

ε` ∼ p(ε) (2.11)

z` = g(φ,x, ε`) (2.12)

L̃(θ,φ,x) =
1

L

L∑
`=1

log pθ(x, z`)− log qφ(z` | x), for L ∈ N. (2.13)

Note that L is commonly chosen to be equal to 1. Thanks to the reparameterisation the gradient

of this estimator with respect to the variational parameters φ can be easily computed via

automatic differentiation and yields an unbiased estimator of the true gradient [KW19]. Hence

it enables the approximate minimisation of −L (θ,φ; x) (Equation 2.10) via stochastic gradient

descent algorithms such as Adam [KB14], which are efficient and scalable. Furthermore, note
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that in many cases the KL divergence can be integrated analytically which only leaves the

estimation of Eqφ(z|x) [log pθ (x | z)] and thus generally yields a lower variance.

For computational efficiency it is important that p(ε) can be easily sampled from. Additionally,

flexibility is required in order to fit to the true posterior which can be complex [BTLLW21].

Partly thanks to methods from stochastic simulation the reparameterisation trick can be used

to sample from various distributions qφ(z|x) [KW13]. In particular, for any distribution which

is part of a location-scale family the reparameterisation trick can be applied by sampling ε from

the standard distribution with location=0 and scale=1 and then applying g(.) = location +

scale× ε, where location and scale are determined by the encoder (recognition model).

Gaussian VAE

While many different variations of the VAE exist, the most com mon version uses a Gaussian

prior. Most basic is the use of a Gaussian distribution with diagonal covariance matrix as prior

so that qφ(z|x) = N (z; µ, σ2I) [BTLLW21]. This yields the following end-to-end formulation

of the VAE:

(µ, log(σ)) = Encoder(φ, x) (2.14)

z = µ+ σε where ε ∼ N (0, I) (2.15)

x̂ = Decoder(θ, z) (2.16)

In the case where both distributions qφ(z|x) and pθ(z) are Gaussian the KL divergence term in

the ELBO can be evaluated analytically, so that we can benefit from the lower variance in the

estimation of the ELBO.

In the case of continuous z and with pθ(x, z) a Gaussian distribution, the marginal likelihood

can be seen as an infinite mixture of Gaussians [KW19].

The choice of a Gaussian with diagonal covariance matrix can be easily extended to a full

covariance by letting the encoder network output a lower triangular matrix L instead of log(σ)
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and then setting z = µ+ Lε. This corresponds to the covariance matrix Σ = LLT .

The issue of blurry samples

VAEs obtain state-of-the-art results and can even be applied as manifold learning algorithms

[GBC16]. However, the main drawback is that samples are blurry which is especially noticeable

for image generation. This blurriness has been attributed to the VAE approximation of the

maximum likelihood objective. More specifically, if the encoder is not discriminative enough

and maps different data points x to the same z in the latent space blurry samples will be

observed as they are essentially an average [ZSE17].

Another issue is the flexibility of the variational posterior qφ(z|x) since

log pθ (x) = DKL (qφ (z | x) ||pθ (z | x)) + L (θ,φ; x)

tells us that the approximate objective of maximising the ELBO is equivalent to the true

objective of maximising the likelihood when DKL (qφ (z | x) ||pθ (z | x)) = 0. This raises the

question how can the KL divergence term be decreased.

2.2.3 Improvements and recent work on VAEs

VAE with Inverse Autoregressive Flows

Generative models in general and VAEs specifically are a very active field of research. Hence

several extensions to the originally proposed VAE model have been suggested. One of which is

the introduction of normalising flows to increase the flexibility of the variational posterior. This

has been first introduced by Rezende and Mohamed in [RM15] and then developed further for

high dimensional spaces by Kingma et al. with the Inverse Autoregressive Flow (IAF) [KSJ+16].

Kingma et al. proposed the use of IAF due to its flexibility and scalability to high dimensions.

The idea of normalising flows is to start with a known distribution z0 ∼ q(z0|x) and then
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to iteratively transform this distribution into a more flexible distribution via a transformation

ft(·) to yield distributions zt = ft(zt−1,x).

Given that the Jacobian determinant of the transformations ft(·) can be computed the prob-

ability density functions of the iterates zt can be computed via change of variables [KSJ+16].

In particular, for the T − th iterate we have that

log q (zT | x) = log q (z0 | x)−
T∑
t=1

log det

∣∣∣∣ dztdzt−1

∣∣∣∣ . (2.17)

To understand IAF first note that it is the inverse of the Masked Autoregressive Flow (MAF)

first introduced in [PPM17]. In Autoregressive models the joint density is modelled as a product

of conditionals. For the MAF each conditional is modeled as a Gaussian:

p (xi | x1:i−1) = N
(
xi | µi, σ2

i

)
, i = 1, . . . , D (2.18)

where the input x ∈ RD [PPM17]. Here a MADE network [GGML15] is used to output the

mean and standard deviation parameters. The MADE network satisfies the autoregressive

property:

µi = fµi(x1:i−1)

σi = fσi(x1:i−1)

 i = 1, . . . D.

Commonly fσi(x1:i−1) is taken to be the log-standard deviation giving the forward transforma-

tion

xi = fσi (x1:i−1) zi + fµi (x1:i−1) , i = 1, . . . , D, (2.19)

where z ∼ N (0, I). It follows from Equation 2.19 that the forward transformation can only be

computed sequentially. However, the inverse transformation

z =
x− fµ(x)

fσ(x)
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is parallelisable which is required for scalability to D >> 1 [KSJ+16]. Such a transformation is

referred to as IAF step and we denote it by z = fIAF (x). To obtain more expressive posteriors

several IAF steps can be composed together to give zt = f
(t)
IAF (zt−1) for t = 1, . . . , T .

Suppose the encoder outputs the distribution qφ(z0|x), then after T steps of IAF the log density

is given by

log qφ (zT | x) = log qφ (z0 | x) +
T∑
i=1

l∑
k=1

log σ
(i)
k , (2.20)

where l denotes the dimension of the latent space, the IAF parameters are contained in φ and

qφ(·) is used to denote the density at each step. To conclude we sample from this distribution

and pass the samples through the decoder to obtain pθ(x|zT ). For an overview of the use of

IAF within VAE see Figure 2.2.

Figure 2.2: Concept VAE with IAF to increase expressivity of the posterior. The final z is then
used as input to the decoder. The Figure is taken from [KSJ+16].

Conditional VAE

Another neat extension of the standard VAE is the conditional VAE [SLY15], which enables

the use of additional information, such as categories. It is based on the constraint of the

Standard VAE that multimodal distributions are hard to model and even knowing the modes

is not taken advantage in the encoder nor the decoder. Specifically assume that in addition

to the observations xi (e.g. images of clothing items) we have other information ci (e.g. the

item category like shoe, dress, etc.). The basic idea is to simply condition on c which yields

qφ(z|x, c) and pθ(x|z, c) as the variational and inference models of the conditional VAE. The
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variational lower bound is straight forwardly computed to be

log pθ(x|c)−DKL[qφ(z|x, c)‖pθ(z|x, c)] = Eqφ(z|x,c)[log pθ(x|z, c)]−DKL (qφ(z|x, c)‖pθ(z | c)) .

This formulation of the VAE enables us to learn multimodal distributions. Furthermore, the

conditional VAE can be applied to image labelling. But also in general for prediction. For

example the model has originally been proposed for image completion, i.e. given a quadrant

(c) of the image it would predict the remaining quadrants (x). The prdiction can for example

be obtained by drawing z and taking the average of the posterior:

x∗ = arg max
x

1

L

L∑
l=1

pθ
(
x | c, z(l)

)
, z(l) ∼ pθ(z | c)

2.3 VAE on Hilbert Spaces

With more and more data being of functional form we require generalisations of existing meth-

ods to functional data. Different such generalisations have been suggested for deep learning

models. Mishra et al. proposed πV AE which utilisies VAEs for Bayesian inference. πV AE

learns a basis decomposition of sampled functions and then the latent space is used with the de-

coder to perform inference yielding state-of-the-art performance on spatial interpolation tasks

[MFB20].

πV AE is distinguished from a standard VAE by embedding the data into a function space

and then learning to reconstruct the linear map from this feature space to the output space of

function evaluations.

Assume we have N function draws, where each draw consists of evaluations at M locations.

Specifically, the ith element in the data consists of M pairs {(ski , xki )}Mk=1 (i ∈ 1,...,N denoting

a pair of (input, output) locations. Here ski and xki could be multidimensional, i.e. ski ∈ Rm

for m ∈ N and similarly for xki , but in this report we restrict ourselves to ski ∈ R as this is a

common form of functional data. Each input location ski is mapped to a higher dimensional
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feature space by the map Φ(·) : R → Rd. The authors propose a combination of an RBF

network and a Neural Network but note that any explicit feature representation for an RKHS

(Reproducing Kernel Hilbert Space) can be used. The feature space is then mapped to the

output space via a linear mapping β by x̂ki = βTi Φ(ski ). Observe that since β is independent of

the locations it allows the prediction of function evaluations at arbitrary locations s. Hence an

advantage of πV AE is that in its general form it allows non equally spaced evaluation locations.

Furthermore, importantly note that while the feature map Φ(·) is shared across locations and

for all N samples, the linear mapping is sample specific. I.e. for each of the N samples an

individual linear map {βi}Ni=1 is learnt. Then a VAE takes the linear maps {βi}Ni=1 as inputs

and is trained to encode and decode these. Thus, instead of learning to reconstruct function

evaluations (like a standard VAE) πVAE learns to reconstruct the mappings from a feature

space to the output space. This gives the following end-to-end formulation [MFB20]:

x̂ke,i = β>i Φ
(
ski
)

(2.21)

[zµ, zsd]
> = e (ηe, βi) (2.22)

Z ∼ N
(
zµ, z

2
sdI
)

(2.23)

β̂i = d (ηd,Z) (2.24)

x̂kd,i = β̂>i Φ
(
ski
)
. (2.25)

Learning is performed via maximisation of the ELBO which in this case contains an additional

term for the feature map and is given by

arg max
ηe,ηd,Φ,βi

p
(
xki | βi, ski , φ, ηe

)
+ p

(
xki | Z, ski , φ, ηd

)
−KL

(
N
(
zµ, z

2
sdI
)
‖N (0, I)

)
.

Assuming a Gaussian Likelihood this simplifies to the loss

arg min
ηe,ηd,Φ,β

(
xki − βTi Φ

(
ski
))2

+
(
xki − β̂Ti Φ

(
ski
))2

+ KL
(
N
(
zµ, z

2
sdI
)
‖N (0, I)

)
.

Inference with πVAE is performed using MCMC methods to sample from the posterior. For
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more details on πVAE (especially on the inference step) we refer to [MFB20].

Similar to the idea in but only aiming to learn function representations for clustering with an

Autoencoder, the authors of [HSWH21] proposed FAE. FAE is an Autoencoder which handles

functional data by replacing scalar weights by functional weights and the scalar product by the

inner product of L2 in the first and last layers of the Autoencoder.

In this thesis we consider functional weights given by a linear combination of a set of basis

functions {ϕk}Bk=1. Specifically, we define the functional weight w ∈ L2([0, 1]) by

w(t) =
B∑
k=1

ckϕk(t), ck ∈ R.

Hence given the functional input x ∈ L2([0, 1]) the output of node i in the first layer of the

encoder is given by

HE(x) = σ

(∫ 1

0

wi(t)x(t)dt+ bi

)
(2.26)

= σ

(∫ 1

0

(
B∑
k=1

wikϕk(t)

)
x(t)dt+ bi

)
(2.27)

= σ

(
B∑
k=1

wik

∫ 1

0

ϕk(t)x(t)dt+ bi

)
, (2.28)

where wi is the functional weight, bi is a bias term and σ(·) the activation function e.g. Relu.

This resembles a functional layer with functional neurons which were first proposed by Rossi

and Conan-Guez [RCG05]. Thereafter, the encoder is composed of standard fully connected

dense layers (or just the functional layer with one more dense layer outputting log (σ) and

µ). Similarly the final layer of the decoder network transforms scalar values x1, . . . , xB into a

function of the form

HD(x1, . . . , xB)(t) =
B∑
k=1

wkxkϕk(t) + b.

The use of a set of basis functions allows a parsimonious way to learn as we can learn on the

basis weights. This is more efficient than the more general approach taken in [HSWH21] as

it reduces the number of trainable model parameters and hence reduces the amount of data
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needed to optimise the model parameters [GBC16]. Furthermore, basis functions are known to

help when dealing with irregular data [KR18]. On the other hand, the choice of basis restricts

the modelling capabilities and is and needs to be considered carefully.

We emphasise that this algorithm is designed for functional Data and then can be projected

to finite-dimensional data. Hence the method is aligned with GRIP. In the limit as B → ∞

this approach allows us to invoke the universal approximation theorem for neural networks

generalised to functional neurons in [RCG05]. Thus, theoretically, we should be able to find

optimal qφ and pθ. However, in practice we are limited by B the number of basis functions. It is

crucial to note that the choice of basis is an important aspect of this model since different bases

span spaces with different levels of flexibility for the same number of basis functions. Hence

in addition to the classical hyperparameters of a neural network such as number of neurons,

number of hidden layers, activation function etc. we also have the choice of basis and the

number of basis functions.

Concurrently to this thesis, Rao and Reimherr published a novel approach to function-on-

function regression with continuous neurons [RR21]. Instead of only considering functional

weights in the first and last layer, functional weights throughout the whole network were pro-

posed. Their FBNN is very similar to our approach and is something that should be extended,

i.e. VAE with continuous neurons throughout.
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Experiments

In this chapter we present the simulations and results conducted. In the following sections we

refer to the samples generated with the model by synthetic data or samples while a generated

data set used for training will be referred to as simulated.

3.1 Data Sets

For the purpose of our simulations we will us the following data sets. An overview of the data

set sizes is given in Table 3.1.

3.1.1 Sugar spectra data

The sugar spectra data set results from the field of chemometrics. This data set was collected

as part of an experiment to determine ash content in sugar from the emission spectra. The

data set was downloaded from [Sug] and first analysed in [MNE+98]. For each sample emission

spectra are recorded at several wavelengths, 7 in total. 268 samples are collected and a spectra

for each sample consists of 571 recorded data points. The spectra for one of the wavelengths

are visualised in Figure 3.1.

37
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Figure 3.1: Sugar emission spectra
at wavelength 230. The spectra are
coloured according to the ash content in
the corresponding sugar sample.

Figure 3.2: First 3 normalised func-
tional principal components for the
sugar spectra.

3.1.2 Gridwatch data

This data set is part of publicly available and consists records the electricity consumption.

We consider each day as a single functional observation. The measurements are taken every 5

minutes which leads to a total of 288 evaluations per day. In total the data set contains 533

observations. This data is interesting as especially the weekend days lead to a multi-modal

distribution. The data is shown in Figure 3.4.

3.1.3 Simulated data

Since both, the sugar spectra data set and the gridwatch data set only contain a smaller number

of samples in each category preventing us from reasonably splitting the data into a train and

test sets for the analysis or even applying cross validation we additionally generate simulated

data for some of our experiments.

For the simulated data set we sample from a Gaussian process prior with mean 0 and covariance

function given by the RBF kernel defined by

K (x,x′) = exp

(
−‖x− x′‖2

2σ2

)

The length scale parameter σ is set equal to 1. We generate 2000 samples each evaluated at

100 equally spaced grid points between 0 and 4. Some of the sampled functions are shown in
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Figure 3.3.

Figure 3.3: Simulated data sampled

from Gaussian process prior.

Figure 3.4: Gridwatch data set. The

time steps on the x-axis represent 5

minute intervals.

Data set N M
Simulated GP 4000 100
Sugar Spectra 268 571

Gridwatch 532 288

Table 3.1: Data set summaries, with N the number of samples and M the number of evaluations
per sample.

3.2 Implementation

We note that no implementation of πVAE is publicly available at the time this thesis was

written. The models are implemented in Python using Tensorflow and Keras. For basis ex-

pansions we use Numpy and Pycwt (continuous wavelet transform, Pywt for discrete wavelet

transform) and the Signatory package for the signature transform. The code for VAEs with

inverse autoregressive flows is adapted from the Github repo [IAF]. Some problems during

training are caused by the scaling of the inputs. It is good practice to scale the inputs before

training since for large unscaled inputs the model loss can tend to infinity and convergence can

be very slow. However, simply scaling the inputs to be between 0 and 1 via a min-max scaling

leads to very noisy samples generated from the inference model. We suspect that this is caused

by only scaling the function values and hence disturbing the relation with the derivatives. For
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the purpose of this report the scaling parameter is tuned manually, but we note that this issue

should be further analysed in future studies.

During model training, where enough data is available to allow a sensible train, validation, test

split, the validation loss is monitored for the purpose of early stopping to prevent overfitting.

Additionally, common tools to regularise deep learning models are Dropout [SHK+14], Parame-

ter regularisation, and Batch Normalisation [IS15]. Dropout randomly assigns zero weights to a

specified percentage of the nodes in order to prevent a small number of nodes from dominating

the model. Batch Normalisation increases convergence speed and stabilises the model training

by essentially normalising the outputs of a layer.

Note that due to problems in the implementation of the continuous wavelet transform with a

convolutional VAE we use the discrete wavelet transform with the Daubechies 2 wavelet instead.

3.3 Model Criticism

Assessing the performance of generative models for functional data is a key component of this

report. In the literature generative models are commonly assessed on the following criteria also

chosen by [YJvdS19]:

1. Sample Diversity, i.e. are the samples distributed according to the distribution of the data.

We will assess the diversity via visualisation of the samples and apply t-SNE [VdMH08]

and PCA [BY95] for dimensionality reduction of the functional data (reducing over the

time domain).

2. The samples should not be easy to tell apart from the original data. This will be assessed

via the MMD between original and synthetic samples as well as the test error of a trained

classifier.

3. Usefulness. This will be assessed in one of the applications where we use one of the models

to augment the training data in order to improve a classifier.

The classifier to discriminate between generated samples and the true samples consists of a
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bidirectional-LSTM a type of bidirectional recurrent neural network [SP97] with long short-term

memory [HS97] coupled with a Dense layer (see Section B.3 for an example). Bidirectional-

LSTMs have proven to be successful in applications to sequence or time series data [DKOZ05].

The classifier is then trained on 50% of the total data set (half and half split between generated

samples and original samples). It is then evaluated on the remaining unseen 50% of the data

set and the loss and classification accuracy are reported.

3.4 The choice of basis

As mentioned the choice of basis is crucial and different bases may be suitable for different data.

In this section the different bases introduced in Chapter 2 are assessed based on the criteria

outlined in the previous section (Section 3.3). For the Gridwatch and simulated data sets we

use early stopping with patience 100 during training (maximal number of epochs is 1800) and

compare the samples to an unseen test set. In the case of the Gridwatch the (train, validation,

test)-split is (0.64, 0.16, 0.2). The corresponding split for the simulated data set is (0.35, 0.15,

0.5). For the sugar spectra no early stopping callback is implemented and the model is trained

for full 1600 epochs. The details for the basis are as follows: The parameter of the Matérn

kernel is tuned to be ν = 1.5 leaving flexibility for rougher functions. The number of functional

principal components in the FPCA basis is chosen so that 95% of the variance is captured.

The number of basis functions in the Fourier basis is chosen visually to obtain a good trade-off

between smoothing and interpolation.

Convergence of the training for the simulated data set can be observed in Figure 3.5. The

obtained samples can be compared with the original in Figure 3.6 for the simulated data and

in Figure 3.7 for the sugar spectra. The samples obtained via the FPCA basis appear to be

smoother, especially for the spectra. This can be explained by the use of the small number

functional principal components as basis functions which are rather smooth (see Figure 3.2). All

bases except the Wavelet basis seem to capture the main features of the data and the distribution

does indeed appear to represent that of the unseen test sets (besides for the Wavelet basis).
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Figure 3.8 visualises the simulated test set and synthetic VAE samples in two dimensions

obtained by applying t-SNE. While the Wavelet basis does not show good sample diversity,

synthetic points and test points almost overlap perfectly for the other bases. This suggest a

good approximation to the true distribution. The same methodology only for the sugar spectra

is shown in Figure 3.9. A clear difference in terms of sample diversity can be observed. While

the samples obtained from a model with FPCA basis show good diversity and match the original

samples well, the Matérn kernel and Fourier bases appear to be more constraint. The same

observation is made for the Gridwatch data. This is cause by the ability of FPCA to capture

95% of the variability in the data with a very small number of basis functions for the data sets

here considered. Consequently, we expect the samples to match well after the dimensionality

reduction. On the other hand we sacrifice flexibility by only using a small number of basis

functions. The complete results can be found in Appendix B.

Figure 3.5: Train and validation loss for different basis on the simulated Gaussian process prior

samples.
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Figure 3.6: Generated synthetic samples for different basis on the simulated Gaussian process

prior samples together with the generated test set.

Figure 3.7: Generated samples for different basis on the Sugar spectra together with the original

spectra.
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Figure 3.8: Synthetic samples and test data set for simulated GP samples projected into 2-D

via t-SNE.

Figure 3.9: Synthetic samples and test data set for Sugar spectra projected into 2-D via t-SNE.

The results of the discriminative comparison are summarised in Table 3.2. On first glance, one

notices that no clear best basis can be chosen based on the considered metrics and indeed the

suitability does depend on the data set at hand. This is due to the different spaces spanned by

the truncated bases. For the sugar spectra data set the FPCA basis yields the best results with

big difference. The samples hardest to discriminate with the classifier are obtained from the

FPCA and Matérn kernel bases. On the other hand, the Fourier basis performs well in terms of

the MMD. It can be observed that for all except the Wavelet basis the lowest accuracy values

when discriminating synthetic data from original data are approximately 0.5 which means the

classifier is only as good as randomly assigning labels. Note that sometimes the estimate of

the M̂MD
2

SQR is uninformative for a comparison as it for example returns 0 for all bases in

the case of the Gridwatch data (even for the Wavelet basis which yields samples far below the

quality of the other bases).
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Basis Data Epochs M̂MD
2

SQR M̂MD
2

CEXP Loss Accuracy

Wavelet
Simulated GP 1800 0.428 0.081 0.108 0.964
Sugar Spectra 1600 3.16× 10−45 0.095 0.495 0.907

Gridwatch 1259 0 7.4× 10−8 0.33 0.99

Fourier
Simulated GP 407 0.004 0.0001 0.688 0.534
Sugar Spectra 1600 1.41× 10−104 0.036 0.577 0.701

Gridwatch 285 0 3.49× 10−22 0.697 0.476

FPCA
Simulated GP 583 0.012 0.011 0.655 0.604
Sugar Spectra 1600 0 0.002 0.697 0.515

Gridwatch 1629 0 6.67× 10−15 0.693 0.494

Matérn
Simulated GP 393 0.001 0.001 0.692 0.519
Sugar Spectra 1600 5.02× 10−65 0.045 0.640 0.746

Gridwatch 405 0 3.34× 10−10 0.694 0.5

Table 3.2: Results of the discriminative comparison: The estimated MMD2 for the different
Bases and Datasets is reported. In the case of the Synthetic GP Data set the MMD estimates
between an unseen test set and the VAE samples are reported. For the Sugar spectra data
set the estimated MMD between the original data set and 2000 VAE samples is reported.
Additionally, the average test accuracy and average validation loss over 5 independent runs of
training the LSTM classifier for 20 epochs are reported.

Furthermore, observe that early stopping kicks in after only 300-400 training epochs for the

Fourier and Matérn kernel bases compared to approximately 600 and 1600 for the FPCA basis.

The models trained here are reasonable small and fast to train. However, this is an important

consideration when training larger and deeper model architectures. Taking the different aspects

into account, we emphasise once again that the choice of basis is dependent on the data set we

wish to model. Based on our simulations and implementation the Wavelet transform is clearly

the worst candidate. Both, the FPCA basis and the Matérn kernel basis, perform very well,

however, the visualisations show more diversity in the case of FPCA. We end this section with

a discussion of the suitability of the signature transform.

3.4.1 Signature transform

The insertion algorithm is the current state-of-the art for inversion of the signature transform.

By inserting elements in lower levels to approximate higher levels in the signature, errors in the

signature reconstruction have a strong influence on the final output after inversion. Experiments

showed that reconstructions from lower depth signatures were more robust to noise (Figure
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B.14). Additionally, to reconstruct a function input with a large number of observations to

reasonable detail a high depth of the signature is required resulting in very high dimensional

feature spaces. Specifically, the signature up to depth ` of a path in Rd has d` terms. Since we at

least consider paths in R2 (locations, evaluations) this is a clear bottleneck. To avoid these issues

we applied the signature transform and inversion to smaller path segments and concatenated

the resulting reconstructions. This lead to better results (Figure B.15) but not comparable

to the bases discussed in the previous section. Finally, since the signature transform loses

the information of translation the start point needs to be passed into the inversion algorithm.

Therefore, this might be a case for the conditional VAE where the start point is passed as

condition.

While in our case of dense functional data with M ≥ 100 for all data sets the signature

transform did not prove suitable so far but we recognise its strong potential. In particular, for

sparse functional data where the mentioned bottlenecks should not appear to be a problem.

3.5 Sensitivity Analysis

To analyse the influence of the latent dimension we perform a sensitivity analysis. We use the

simulated data set and train the VAE with Matérn kernel basis for 500 epochs. The dimension

of the latent variable is varied from 2 to 30 and for each 2000 synthetic samples are generated

and compared to the unseen test set via the MMD. The results are presented in Figure 3.10.

The plot shows that for the simulated data set a latent dimension of 5 is sensible. The significant

increase for the FPCA basis is caused by the small number of basis functions so that a high

latent dimension leads unnecessary complexity and worse performance. The corresponding

results for the Gridwatch and sugar spectra data can be found in Appendix in Section B.4 and

show more robustness for the FPCA based basis.
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Figure 3.10: Simulated data sampled from Gaussian process prior. The dimensionality of the

latent variable is varied from 2 to 30 and for each value the VAE is trained for 500 epochs

with each basis. The estimated MMD between an unseen test set and the synthetic generated

samples is reported.

3.6 Comparison between standard VAE and VAE with

IAF

As discussed in Chapter 2 an improvement to the standard VAE is the use of inverse autore-

gressive flows to obtain a more flexible model which has an ELBO closer to the true likelihood.

In this comparison we drop the wavelet and Fourier basis since they were outperformed by the

basis based on FPCA and the Matérn kernel. We train the VAE with 4 IAF steps, a latent

dimension of 5 (see B.5 for an example architecture) and report the results of a discrimina-

tive analysis in comparison to the standard VAE in Table 3.3. The discriminative comparison

shows that for both bases on the simulated data and the sugar spectra data the VAE with IAF

performs actually worse than the standard VAE. The performance gap is the most significant
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on the simulated data set. For the simulated data this observation is supported by the visual-

isations in Figures 3.11 and 3.12 for Matérn kernel and FPCA based bases respectively. The

corresponding Figures for the sugar spectra data set are Figures 3.13 and 3.14. Here, similarly

to standard VAE, a strong difference in terms of sample diversity between the two bases can be

observed with the samples using the FPCA based basis matching the data significantly better.

The distributions for those data sets are not very complex which is why the standard model

performs well. Additionally, when introducing IAF into the model we add a large number of

trainable parameters. Hence the IAF model requires more training and is harder to optimise.

This explains the decrease in performance for the presented examples. Only for the slightly

more complex Gridwatch data set a small performance improvement can be observed by intro-

ducing IAF steps. While using the FPCA based basis yields good sample diversity (see Figure

3.16), the projection into 2-D for the Matérn kernel based basis does not coincide for synthetic

and original data (see Figure 3.15). The discriminative comparison yields good results never-

theless (no drastic changes when increasing the complexity of the classifier significantly). For

all simulations conducted the corresponding projections into 2-D via FPCA can be found in

the Appendix (see Section B.5) and confirm the observations made.

Data set Basis Model type M̂MD
2

CEXP Loss Accuracy

Simulated
GP

FPCA
IAF 0.3 0.2455 0.9025

Standard 0.011 0.655 0.604

Matérn
IAF 0.2605 0.3409 0.8505

Standard 0.001 0.692 0.519

Sugar
FPCA

IAF 0.0024 0.6961 0.5261
Standard 0.002 0.697 0.515

Matérn
IAF 0.23 0.6296 0.8209

Standard 0.045 0.640 0.746

Gridwatch
FPCA

IAF 1.57× 10−97 0.6994 0.4756
Standard 1.1× 10−15 0.6932 0.5

Matérn
IAF 8.16× 10−198 0.6978 0.4756

Standard 3.34× 10−10 0.694 0.5

Table 3.3: Simulation results for the discriminative comparison of standard VAE and the VAE
with IAF. Loss and accuracy are the averages of 5 independent training runs with a different
train test split each run. The estimates of MMD2 are computed based on 2000 synthetic
samples and computed with respect to the original data sets.
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Figure 3.11: Synthetic samples from

VAE with IAF with Matérn kernel

based basis and test data set for sim-

ulated GP samples projected into 2-D

via t-SNE.

Figure 3.12: Synthetic samples from

VAE with IAF with FPCA based ba-

sis and test data set for simulated GP

samples projected into 2-D via t-SNE.

Figure 3.13: Synthetic samples from

VAE with IAF with Matérn kernel

based basis and sugar spectra data set

projected into 2-D via t-SNE.

Figure 3.14: Synthetic samples from

VAE with IAF with FPCA based ba-

sis and sugar spectra data set projected

into 2-D via t-SNE.
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Figure 3.15: Synthetic samples from

VAE with IAF with Matérn kernel

based basis and Gridwatch data set pro-

jected into 2-D via t-SNE.

Figure 3.16: Synthetic samples from

VAE with IAF with FPCA based basis

and Gridwatch data set projected into

2-D via t-SNE.

3.7 Mode collapse and Conditional VAE

A common issue for VAE on multi modal distributions is mode collapse. The model will pick up

and be able to synthesise samples for around the dominant modes of the distribution but miss

other nodes which might belong to smaller classes. To this end we generalise the standard VAE

on Hilbert spaces to the conditional model passing the category c of an input as conditional

information. Since this input is not compatible with the functional layer, in addition to the

functional neurons we have added a standard neuron with weight 1, bias 0, and linear activation

function in the first layer to simply output c. It is then treated as any other output of the

first layer. In the decoder network c is appended to the sampled latent variable z. We choose

one-hot encoding to encode the categorical information.

Thus far we have only considered the sugar spectra at a single wave length. Here we treat each

wavelength as its own category. The categories are balanced with 268 samples each. For the

Gridwatch data the categories are represented by the day of the week. The categories are not
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too unbalanced but considering that the two weekend days mainly differ from the weekdays an

imbalance is present (see Table 3.4).

Weekday Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Count 62 61 73 64 81 96 95

Table 3.4: Category count for the Gridwatch data set.

For the comparison we train the conditional and the standard model on the training set and

monitor the validation loss. The model architectures are equivalent up to the conditional

input. The latent dimension is taken to be 5 and the split into train, validation and test

set is determined by the proportions 0.5,0.2,0.3. The reported results are then obtained by

a comparison to the test set. To ensure that the number of samples in each category are

proportionally represented in the training and test set we use a stratified split.

The simulations are again run for all bases but we expect the FPCA and Matérn kernel bases

to perform well due to reasonable performance on the multi-modal Gridwatch data and quick

convergence in Section 3.4. A visual comparison to assess the diversity is shown for the sugar

spectra data with FPCA basis in Figures 3.17 - 3.19 and for the Gridwatch data with Fourier

basis in Figures 3.20 - 3.22. We observe a clear difference in sample diversity (see Figures 3.19

and 3.22 for sugar and Gridwatch data respectively). For both data sets the conditional VAE

generates more diverse samples which match the distribution significantly better. The different

modes are especially strongly separated in the sugar spectra data and the conditional VAE

captures all modes while for the standard model two modes seem to have collapsed (see Figure

3.19). These observations are repeated for the other bases and when reducing the dimension

via FPCA instead of t-SNE similar results are obtained.

The results of the discriminative comparison are summarised in Table 3.5. Even though the

visual comparison has clearly favoured the conditional model on the sugar spectra data a lower

M̂MD
2

CEXP value is obtained with the samples from the standard model. Note that in terms

of the test accuracy of the classifier the conditional model performs slightly better than the

standard model. For the Gridwatch data the conditional model obtains a consistently smaller
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Figure 3.17: Training and validation loss for conditional and standard model trained on sugar
spectra data.

Figure 3.18: Samples from conditional and standard model with FPCA basis. The samples are
obtained after training the models on the training split of the sugar spectra data set.

Figure 3.19: Samples from conditional and standard model with FPCA basis. The samples are
obtained after training the models on the training split of the sugar spectra data set. And then
projected into 2-D via t-SNE. Here the original data denotes a test set unseen during training.
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Figure 3.20: Training and validation loss for conditional and standard model trained on Grid-
watch data.

Figure 3.21: Samples from conditional and standard model with Fourier basis. The samples
are obtained after training the models on the training split of the Gridwatch data set.

Figure 3.22: Samples from conditional and standard model with Fourier basis. The samples are
obtained after training the models on the training split of the Gridwatch data set. And then
projected into 2-D via t-SNE. Here the original data denotes a test set unseen during training.
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M̂MD
2

CEXP . The trained classifier is not able to distinguish the samples with a test accuracy

of 0.5 for both the conditional and standard model.

In conclusion the conditional model shows far superior sample diversity and is hence more

suitable for multimodal distributions, even though this difference is not significantly reflected

in the discriminative comparison.

Data set Basis Model type M̂MD
2

CEXP Loss Accuracy

Sugar

FPCA
Conditional 0.004 0.369 0.792

Standard 0.001 0.416 0.799

Matérn
Conditional 0.019 0.163 0.954

Standard 0.003 0.133 0.96

Fourier
Conditional 0.012 0.055 0.994

Standard 0.007 0.024 0.999

Gridwatch

FPCA
Conditional 5.19× 10−163 0.6932 0.5

Standard 3.8× 10−93 0.6932 0.5

Matérn
Conditional 8.16× 10−198 0.6932 0.5

Standard 7.74× 10−73 0.6932 0.5

Fourier
Conditional 1.64× 10−265 0.6932 0.5

Standard 7.34× 10−70 0.6932 0.5

Table 3.5: Simulation results for the discriminative comparison of conditional and standard

models with different basis. Loss and accuracy are the averages of 5 independent training runs

with a different train test split each run. The estimates of MMD2 are computed based on 3939

and 1116 samples for the sugar spectra and Gridwatch data sets respectively (keeping category

counts proportional).
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3.8 Improving functional classifiers with conditional VAE

on Hilbert spaces

A common technique to improve the performance and generalisability of a deep learning model,

especially classifiers, is data augmentation (see e.g. [FADK+18]). This technique is especially

useful for unbalanced classification problems which are common with applications such as credit

card fraud detection or cyber security breaches.

So far we have omitted the fact that the sugar spectra data set has an additional response

variable, the ash content of the sugar sample emitting the spectra. A histogram of the ash

content is shown in Figure 3.23. The highest measured response is 33. We split the data set

into to classes, the samples with high ash content > 18 and low ash content ≤ 18. This leads

to the classes with 31 and 237 samples in the high and low category respectively (see Figure

3.24).

Figure 3.23: Histogram of ash content

in sugar samples.

Figure 3.24: Sugar spectra at wave-

length 325 coloured corresponding to

high or low ash content.

Let us consider the following toy classification problem: The task for the model is to classify

a sugar sample as having high or low ash content based on the corresponding spectrum at

wavelength 325. This is an unbalanced classification problem since the data set contains only

31 samples with ash content higher than 18.
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We split the data set into a train and test set. The test set consists of 16 samples with high ash

content and 16 samples with low ash content. The train set contains the remaining 15 samples

with high ash content and 221 samples with low ash content. Note the imbalance present in

the training data which will lead to the classifier simply predicting all class labels as low ash

content. I.e. naively training the classifier we expect an accuracy of 0.5 on the test set.

The classifier consists of a Bidirectional-LSTM layer followed by a dense layer. As loss the

Categorical cross entropy loss is used and the model is optimised with the Adam algorithm.

The model is trained on the train set and then evaluated on the test set with accuracy as

metric. One training loop consists of 6 epochs (this has proven to be enough for the classifier

to converge). Once a training loop is complete we augment the training data. Specifically

we generate samples belonging to the underrepresented category with a conditional VAE with

FPCA basis and add the synthetic samples to the train set. Then the classifier is reinitialised

and trained for 6 epochs. We keep adding synthetic data until the number of samples in

each category is equal. The resulting averaged test accuracies over 4 independent runs of this

process are shown in Figure 3.25. As expected, without data augmentation the accuracy on

the balanced test set is 0.5. As we increase the proportion of samples with high ash content by

adding the synthetic data an increase in the averaged test accuracy to 0.61 can be observed.

The jump is observed as the number of high ash content samples in the training data set reaches

70% of the number of samples with low ash content. Augmenting the data set further only leads

to a small increase, which is common for this approach. This is a remarkable result as only

using the same data we have managed to significantly increase classifier. It shows the usefulness

of the synthetic samples and hence the applicability of the conditional VAE on Hilbert spaces.
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Figure 3.25: Averaged accuracy of 4 independent runs on test set plotted against the ratio of

number of samples containing a high ash content and number of samples containing a low ash

content.

3.9 Conditional VAE on Hilbert spaces for multivariate

functional data synthesis

In section 3.8 we have discussed the application of conditional VAE to augment an underrepre-

sented class of a data set in order to improve the generalisability of a classifier. However, instead

of passing one-hot encoded category labels as conditional information we could pass a func-

tion. We propose the conditional VAE on Hilbert spaces as a generative model for multivariate

functional data.

Consider the bivariate functional data set (x1
(i),x2

(i))Ni=1 where xj
(i) ∈ L2([0, 1]) for j=1,2 and

i = 1, . . . , N . To generate samples from the joint distribution we first train a standard VAE on

Hilbert spaces to target the marginal distribution of x1. Then a conditional model is trained

to generate samples x2|x1.

The idea is straight forward to implement with the only bootleneck being the high dimension-

ality of functional data. We avoid this by passing the FPCA coefficients needed of a sample x1
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as conditional information to the conditional model.

We apply this approach to the sugar spectra data set. Even though we considered all observation

as independent and the distinct wavelengths as different modes of the distribution for the

purpose of analysing mode collapse, the data set is a multivariate functional data set. The first

10 samples for the wavelengths 325 and 290 are visualised in Figure 3.26.

Figure 3.26: Some spectra for wavelength 325 (left) and 290 (right).

Due to the strong performance of the FPCA basis on the sugar spectra data (see section 3.4)

it is the basis of choice here. To compare the bivariate samples to the original distribution we

concatenate x1 and x2 reduce over the time dimension with t-SNE to visualise the synthetic

and original samples. The results are shown in Figure 3.27. The plot shows that the synthetic

samples seem to match the original samples fairly well. It can be observed, that the synthetic

data is slightly over represented in the central area of the plot and lacking support on the edges

such as bottom left. As before we train Bidirectional-LSTM classifier, this time taking as input

the bivariate time series. Averaging over 5 independent training runs we report an average test

loss of 0.678 and an average test accuracy of 0.624. This suggests that the synthetic samples are

indeed reasonably similar to the original bivariate data. However, we note that this approach

of conditioning on synthetic samples is suboptimal and in general a model to generate bivariate

samples directly from the joint distribution should be preferred.
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Figure 3.27: Concatenated x1 and x2 along time axis for synthetic samples and original, then

reducing along time dimension with t-SNE and plotting the projection into 2-D.
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Conclusion

4.1 Summary of Thesis

We now summarise the work conducted as part of this thesis:

• Presented theory on Functional Data analysis in combination with deep generative mod-

elling.

• Defined VAE on Hilbert spaces and gave justification based on GRIP (to the best knowl-

edge of the author not seen so far).

• Extended VAE on Hilbert spaces with IAF steps.

• Extended VAE on Hilbert spaces to a conditional model.

• Analysed Wavelet basis, Fourier basis, FPCA based basis, Matérn kernel induced basis

and the Signature for the VAE on Hilbert spaces by applying the model to three different

data sets. A visual and discriminative comparison of the synthetic samples is conducted.

• Conducted a sensitivity analysis to analyse the robustness of the model with different

bases.

• Compared the VAE on Hilbert spaces with and without IAF steps.

• Analysed mode collapse for VAE on Hilbert spaces and demonstrated improved perfor-

mance for multimodal distributions with the conditional model.

60
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• Demonstrated application of the conditional model by augmenting an unbalanced data

set to improve the performance of a classifier.

• Presented the use of the conditional model to sample from a bivariate distribution.

4.2 Key results

The analysis of the different bases showed that both Wavelets and the signature transform

are not suitable for the data sets here considered. The Fourier basis, FPCA based basis,

and Matérn kernel induced basis performed well in the discriminative comparison. Especially,

the Matérn kernel induced basis and the FPCA based basis stood out. Both showed good

performance on the Gridwatch data and additionally the first performed well on the simulated

data while the second was strong on the Sugar spectra data. The visual comparison of the

sample diversity showed good results for the simulated data regardless of bases (aside from

Wavelet and Signature). However, on the Sugar spectra data and the Gridwatch data the

FPCA based basis resulted in synthetic samples which matched the original data significantly

better than the less diverse synthetic samples obtained with the other bases.

Generally, a latent dimension of 5 was sufficient to model the data sets at hand and no significant

performance improvement for higher latent dimensions was observed. The models with Matérn

kernel induced basis and Fourier basis were robust under the latent dimension while on the

simulated data the FPCA based model suffered performance loss when increasing the latent

dimension to above 5.

Introducing IAF steps into the model lead to worse performance on the the Sugar spectra

data and especially the simulated data set. The performance on the Gridwatch data slightly

improved.

The most important aspect of the thesis is the conditional model. While in the multimodal

setting the standard VAE on Hilbert spaces suffered from mode collapse we improved the

performance by conditioning on the mode which a sample belongs to. We demonstrated the

usefulness of the conditional model by applying it to an unbalanced data set. We obtained a
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significant performance improvement of a classifier by augmenting its training data set with

synthetic samples from the conditional model. Considering that the conditional VAE on Hilbert

spaces was trained on the same data as the classifier, i.e. no additional data was used, this is

a truly remarkable result.

4.3 Future Work

The opportunities for future work are plentiful and exciting. First, one could explore other

basis such as the popular Splines. A comparison of the VAE on Hilbert spaces with state-

of-the art time series generation models such as WaveNet [ODZ+16] or TimeGAN [YJvdS19]

could be conducted, although we note that being designed for functional data rather than time

series depending on the data set we expect to see better performance from the time series

models. Another possibility is to explore this methodology for sparse functional data. To

this end we might want to reconsider the signature transform. Furthermore, the suitability of

the standard normal distribution as prior could be investigated since in higher dimensions the

normal distribution behaves counter-intuitively. The most interesting option is to adapt the

VAE to being fully functional in the sense of using functional neurons throughout(see [RR21])

and adapt the sampling layer.
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Appendix A

Additional theory

Theorem A.1. A finite dimensional analog to Mercer’s Theorem. Consider the gram matrix

Gij = k(xi, xj) where k is a continuous symmetric non-negative definite kernel. Let f =

(f1, . . . , fn) ∈ Rn. Then

(Tkf)(·) =
n∑
n=1

k(·, xi)fi.

It follows that G is non-negative definite and hence can be written as

G =
n∑
n=1

λiviv
T
i ,

with λi ≥ 0. It follows that

k (xi, xj) = Kij (A.1)

=
n∑
t=1

λtvtivtj (A.2)

=
n∑
t=1

λtψt (xi)ψt (xj) (A.3)

where ψt : X → R is given by ψt (xi) = vt,i.

72
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Additional results

B.1 Choice of Basis

B.1.1 Simulated Data

Figure B.1: Train and validation loss for different basis on the simulated Gaussian process prior

samples.

73
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Figure B.2: Synthetic samples for different bases in comparison to the simulated Gaussian

process test set.

Figure B.3: Synthetic samples and true test set projected to 2-D via t-SNE for a visual com-

parison.

Figure B.4: Synthetic samples and true test set mapped to 2-D via FPCA for a visual compar-

ison.
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B.1.2 Gridwatch Data

Figure B.5: Train and validation loss for different basis on the Gridwatch data.

Figure B.6: Synthetic samples for different bases in comparison to the original Gridwatch data.
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Figure B.7: Synthetic samples and true test set projected to 2-D via t-SNE for a visual com-

parison.

Figure B.8: Synthetic samples and true test set mapped to 2-D via FPCA for a visual compar-

ison

B.1.3 Sugar spectra Data

Figure B.9: Train loss for different basis on the sugar spectra data.
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Figure B.10: Synthetic samples for different bases in comparison to the original sugar spectra

data.

Figure B.11: Synthetic samples and true test set projected to 2-D via t-SNE for a visual

comparison.

Figure B.12: Synthetic samples and true test set projected to 2-D via FPCA for a visual

comparison.
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B.2 Signature

Figure B.13: The paths are samples from the Gaussian process prior (blue). The signature

transform of depth 5 is taken and directly inverted (orange).

Figure B.14: The paths are samples from the Gaussian process prior. The signature transform

of depth 5 is taken, standard normal noise is added and then the inverse transform is performed.

The path approximations from the noisy signature are compared to the original paths. Notice

that the inversion is reasonably robust to the additive noise. More experiments were performed

but omitted here.
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Figure B.15: Using the signature transform of depth 4 on path segments of length 10 and

concatenated. The reconstructions obtained by a full pass through the model and the corre-

sponding inputs are visualised

B.3 Bidirectional-LSTM classifier example

Model:

_________________________________________________________________

Layer (type)                 Output Shape              Param #

=================================================================

bidirectional_14 (BiLSTM)    (None, 40)                3520

_________________________________________________________________

dropout_14 (Dropout)         (None, 40)                 0

_________________________________________________________________

dense_229 (Dense)            (None, 2)                  82

=================================================================

Total params: 3,602

Trainable params: 3,602
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Non-trainable params: 0

B.4 Sensitivity Analysis

Figure B.16: The dimensionality of the

latent variable is varied from 2 to 30 and

for each value the VAE is trained for 500

epochs with each basis. The estimated

MMD based on CEXP between the orig-

inal Gridwatch data and the synthetic

samples is reported.

Figure B.17: The dimensionality of the

latent variable is varied from 2 to 30 and

for each value the VAE is trained for

500 epochs with each basis. The esti-

mated MMD based on CEXP between

the original sugar spectra data and the

synthetic samples is reported.

B.5 Comparison between VAE with and without IAF

The following as an example architecture for VAE with 4 IAF steps. We note that the number

of trainable parameters is 61,055.

Model: Example of VAE with IAF

____________________________________________________________________________

Layer (type) Output Shape Param # Connected to

============================================================================

input_6 (InputLayer) [(100, 100)] 0
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____________________________________________________________________________

enc_dense_1 (Dense) (100, 100) 10100 input_6[0][0]

____________________________________________________________________________

enc_bn_1 (BatchNormalization) (100, 100) 400 enc_dense_1[0][0]

____________________________________________________________________________

activation_15 (Activation) (100, 100) 0 enc_bn_1[0][0]

____________________________________________________________________________

dropout_11 (Dropout) (100, 100) 0 activation_15[0][0]

____________________________________________________________________________

enc_dense_2 (Dense) (100, 100) 10100 dropout_11[0][0]

____________________________________________________________________________

enc_bn_2 (BatchNormalization) (100, 100) 400 enc_dense_2[0][0]

____________________________________________________________________________

activation_16 (Activation) (100, 100) 0 enc_bn_2[0][0]

____________________________________________________________________________

dropout_12 (Dropout) (100, 100) 0 activation_16[0][0]

____________________________________________________________________________

lambda_9 (Lambda) (100, 5) 0 dropout_12[0][0]

____________________________________________________________________________

dense_3 (Dense) (100, 5) 505 dropout_12[0][0]

____________________________________________________________________________

dense_4 (Dense) (100, 5) 505 dropout_12[0][0]

____________________________________________________________________________

lambda_10 (Lambda) (100, 5) 0 lambda_9[0][0]

dense_3[0][0]

dense_4[0][0]

____________________________________________________________________________

dense_5 (Dense) (100, 5) 505 dropout_12[0][0]

____________________________________________________________________________
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masking_dense_9 (MaskingDense) (100, 5) 3430 lambda_10[0][0]

dense_5[0][0]

____________________________________________________________________________

masking_dense_8 (MaskingDense) (100, 5) 3430 lambda_10[0][0]

dense_5[0][0]

____________________________________________________________________________

activation_17 (Activation) (100, 5) 0 masking_dense_9[0][0]

____________________________________________________________________________

lambda_11 (Lambda) (100, 5) 0 lambda_10[0][0]

masking_dense_8[0][0]

activation_17[0][0]

____________________________________________________________________________

lambda_12 (Lambda) (100, 5) 0 lambda_11[0][0]

____________________________________________________________________________

masking_dense_11 (MaskingDense) (100, 5) 3430 lambda_12[0][0]

dense_5[0][0]

____________________________________________________________________________

masking_dense_10 (MaskingDense) (100, 5) 3430 lambda_12[0][0]

dense_5[0][0]

____________________________________________________________________________

activation_18 (Activation) (100, 5) 0 masking_dense_11[0][0]

____________________________________________________________________________

lambda_13 (Lambda) (100, 5) 0 lambda_12[0][0]

masking_dense_10[0][0]

activation_18[0][0]

____________________________________________________________________________

lambda_14 (Lambda) (100, 5) 0 lambda_13[0][0]

____________________________________________________________________________

masking_dense_13 (MaskingDense) (100, 5) 3430 lambda_14[0][0]
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dense_5[0][0]

____________________________________________________________________________

masking_dense_12 (MaskingDense) (100, 5) 3430 lambda_14[0][0]

dense_5[0][0]

____________________________________________________________________________

activation_19 (Activation) (100, 5) 0 masking_dense_13[0][0]

____________________________________________________________________________

lambda_15 (Lambda) (100, 5) 0 lambda_14[0][0]

masking_dense_12[0][0]

activation_19[0][0]

____________________________________________________________________________

lambda_16 (Lambda) (100, 5) 0 lambda_15[0][0]

____________________________________________________________________________

masking_dense_15 (MaskingDense) (100, 5) 3430 lambda_16[0][0]

dense_5[0][0]

____________________________________________________________________________

masking_dense_14 (MaskingDense) (100, 5) 3430 lambda_16[0][0]

dense_5[0][0]

____________________________________________________________________________

activation_20 (Activation) (100, 5) 0 masking_dense_15[0][0]

____________________________________________________________________________

lambda_17 (Lambda) (100, 5) 0 lambda_16[0][0]

masking_dense_14[0][0]

activation_20[0][0]

____________________________________________________________________________

enc_dense_7 (Dense) (100, 100) 600 lambda_17[0][0]

____________________________________________________________________________

enc_bn_7 (BatchNormalization) (100, 100) 400 enc_dense_7[0][0]

____________________________________________________________________________



84 Appendix B. Additional results

activation_21 (Activation) (100, 100) 0 enc_bn_7[0][0]

____________________________________________________________________________

dropout_13 (Dropout) (100, 100) 0 activation_21[0][0]

____________________________________________________________________________

x_decoded (Dense) (100, 100) 10100 dropout_13[0][0]

============================================================================

Total params: 61,055

Trainable params: 60,455

Non-trainable params: 600

Figure B.18: Synthetic samples from

VAE with IAF with Matérn kernel

based basis and test data set for sim-

ulated GP samples projected into 2-D

via FPCA.

Figure B.19: Synthetic samples from

VAE with IAF with FPCA based ba-

sis and test data set for simulated GP

samples projected into 2-D via FPCA.
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Figure B.20: Synthetic samples from

VAE with IAF with Matérn kernel

based basis and sugar spectra data set

projected into 2-D via FPCA.

Figure B.21: Synthetic samples from

VAE with IAF with FPCA based ba-

sis and sugar spectra data set projected

into 2-D via FPCA.

Figure B.22: Synthetic samples from

VAE with IAF with Matérn kernel

based basis and Gridwatch data set pro-

jected into 2-D via FPCA.

Figure B.23: Synthetic samples from

VAE with IAF with FPCA based basis

and Gridwatch data set projected into

2-D via FPCA.
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