
MCMC and some variations

Lorenz Wolf

December 9, 2021

Question 1

In this question we consider the following density on R2

f(x, y) = k exp

{
− x2

100
−
(
y +

3

100
x2 − 3

)2
}

where k is a normalising constant. First we will construct and implement an MCMC algorithm to sample
from this distribution. We will then use this sampler to estimate the expected values of X and Y with joint
distribution f(x,y). Finally, a sampling algorithm with adaptive proposal distribution as described by Haario et
al. in [1] is implemented and then compared to the MCMC sampler.

a)

To sample from f(x,y) we propose a Metropolis Hastings algorithm with a additive random walk specified by a
two dimensional normal distribution as outlined in Algorithm 1. We define

• Σ, a valid variance-covariance matrix of a 2-dimensional random variable

• nsteps, the number of iterations

• f(x,y), the target density up to a normalising constant

• N2(µ,Σ), the 2-d normal distribution with mean µ and variance covariance matrix Σ

Algorithm 1: MCMC algorithm with target f(x,y)

Inputs: X0 = (x0, y0), Σ, nsteps, f
for i=1. . . nsteps do

Propose Y ∼ N2(Xi−1,Σ)
Simulate U ∼ Uniform(0, 1)

if U ≤ α = min
(

1, f(Y)
f(Xi−1)

)
then

Xi = Y
else

Xi = Xi−1
end

end

In Figure 1 the unnormalised density is shown. It can be observed that X and Y have very different scales, i.e.
the variance in X is much larger than in Y. Thus, running the algorithm for a simple standard proposal with Σ
such as

Σ =

(
1 0
0 1

)
will lead to poor mixing of the chain.
Since the mode of the distribution can be analytically computed to be p∗ = (x, y) = (0, 3), we will use this
as starting values for all future runs of the algorithm. To improve the mixing we need to take the different
scales and dependency of X and Y into account by choosing Σ appropriately. In order to choose these values we
iteratively use Algorithm 1 (starting with Σ = I1) to sample from the target distribution, then compute sample
covariance, and standard deviations to obtain a better estimate for Σ. This new estimate is used to specify the
proposal in the next iteration. Afterwards we try several values for Σ around this estimate and obtain that the
effective sample size is maximised for

Σ̂ =

(
72 0.22

0.22 2.12

)
.

1

Figure 1: Joint density of X and Y.

To assess the convergence we run the algorithm for a sample size of 5× 104 and Σ = Σ̂ with 6 different starting
values. The traceplots presented in Figures 2 and 3 show good convergence with occasional values of Y large
and negative. Furthermore, we compute the Gelman Rubin diagnostic and obtain a point estimate and upper
confident interval of (1,1.01) and (1,1.01) for X and Y respectively. Additionally, the gelman plots shown in
Figures 4 and 5 do not indicate problems with convergence.

Figure 2: Traceplots of X for chain length 5× 104

with 6 different starting values
Figure 3: Traceplots of Y for chain length 5× 104

with 6 different starting values

Figure 4: Gelman plot for X for chain lengths 5×
104 with 6 different starting values.

Figure 5: Gelman plot for Y for chain lengths 5×
104 with 6 different starting values.

2

With Σ = Σ̂ and starting value p∗ the algorithm is run to obtain a sample of size 105. The first 104 values
of this sample are omitted as burn-in to eliminate the influence of the starting value. In Figures 6 and 7 the
acf’s are presented. They show a reasonable decrease indicating that mixing is ocurring. We note that there
is still significant dependence in the chain. However, having tried several different inputs for Σ no significant
improvement has been found. Plotting the joint density in Figure 8 reveals the ’banana’-like shape required
according to the plot of the real density in Figure 1. However, in the extreme regions the symmetry of f in x is
not observed.

Figure 6: Acf of Y for sample size of 9× 104 after
burn-in with starting value (0,3), Σ = Σ̂ and burn-
in of 104.

Figure 7: Acf of Y for sample size of 9× 104 after
burn-in with starting value (0,3), Σ = Σ̂ and burn-
in of 104.

Figure 8: Joint density of X and Y for sample size of 9× 104 after burn-in with starting value (0,3), Σ = Σ̂ and
burn-in of 104.

b)

Using the sampler discussed in part a) with starting value X0 = (0, 3) and Σ = Σ̂ as specified in part a)
we obtain a sample of size 9 × 104, after having discarded the first 104 points as burn-in. In the following
computations of the means we use this sample. Due to the relatively high dependency in the resulting chain
we suggest to use thinning. However, since the acf decreases slowly an appropriate step size for thinning would
need to be large. As this would leave us with only few observations (limitations due to time and computational
power to sample a longer chain) we omit thinning at this point and note that for better estimates a longer chain

3

should obtained and thinned appropriately. The estimates obtained are

Ê(X) =
1

9× 104

9×104∑
t=1

Xi ≈ −0.2817

Ê(Y) =
1

9× 104

9×104∑
t=1

Yi ≈ 1.5461

Using numerical integration the true values are computed to be E(X) = 0 and E(Y) ≈ 1.614. Thus, the
estimates (especially for X) are not very accurate with errors of 0.28 and 0.068 respectively.

c)

In this section we implement a random walk Metropolis algorithm with an adaptive proposal distribution as
suggested in [1]. The key difference to the sampler in part a) is that the proposed adaptive algorithm adjusts
the proposal distribution based on the samples so far obtained.

In particular assume the points X1, . . . , Xk have been already sampled. Then the proposal Y is sampled from
the distribution qk(.|X1, . . . , Xk) which depends on the last H observations Xk−H+1, . . . , Xk, where H is one
of the input parameters to be specified. As proposal qk(.|X1, . . . , Xk) a 2 dimensional Gaussian distribution
with mean (Xk) and a covariance dependent on the sampled points is implemented. With at least H points
sampled at time t define K ∈ RH×d to be the matrix with row i equal to Xt−H+i and define K̃ = K − E(K)
the corresponding centered matrix. Here E(K) is estimated by the mean of the H values. Then the proposal is
taken to be

qt(.|X1, . . . , Xt) ∼ Xt +
cd√
H − 1

K̃TN (0, IH), (1)

where IH is the H dimensional identity matrix and cd = 2.4√
d
.

To initialise the algorithm the first H points are sampled with the MCMC sampler from part a). Afterwards
the proposal is updated as specified above and then further updates are performed according to the update
frequency U. For an outline of the algorithm refer to Algorithm 2.

Algorithm 2: Adaptive Proposal Metropolis algorithm with target f(x,y)

Inputs: X0 = (x0, y0) (starting value), Σ (inital covariance), H (History length), U (Update frequency),
nsteps (Number of iterations), f (Target up to proportionality)

for i=1. . .H do
Propose Y ∼ N2(Xi−1,Σ)
Simulate V ∼ Uniform(0, 1)

if V ≤ α = min
(

1, f(Y)
f(Xi−1)

)
then

Xi = Y
else

Xi = Xi−1
end

end

K = (X1, . . . , XH)T

K̃ = K − E(K)
for i=H+1. . . nsteps+H do

Propose Y ∼ Xt + c2√
H−1K̃

TN (0, IH)

Simulate V ∼ Uniform(0, 1)

if V ≤ α = min
(

1, f(Y)
f(Xi−1)

)
then

Xi = Y
else

Xi = Xi−1
end
if i = 0 mod U then

K = (Xi−H+1, . . . , Xi)
T

K̃ = K − E(K)
end

end
return (XH+1, . . . , XH+nsteps)

4

To assess the convergence, the algorithm is run for 6 different starting values with U=H=200 (chosen according
to [1]). The traceplots of the chains of length 5×104 for X and Y are shown in Figures 9 and 10 respectively and
do not reveal any issues with convergence. Furthermore, the Gelman Rubin diagnostic and an upper confident
interval are computed to be (1,1) for X and (1,1) for Y. Additionally, the Gelman plots are checked to look fine.

Figure 9: Traceplots of X for chain length 3× 104

with 6 different starting values
Figure 10: Traceplots of Y for chain length 3×104

with 6 different starting values

With U=H=200, starting value (0,3) and Σ as above we obtain a sample of size 9× 104 after a burn-in of 104.
The Acf’s of X and Y for this sample are presented in Figures 11 and 12 respectively and indicate no problems.
The joint density has the ’banana’-like shape as required.

Figure 11: Acf of X for adaptive
proposal sampler.

Figure 12: Acf of Y for adaptive
proposal sampler.

Figure 13: Joint density of X and
Y

Advantages compared to sampler a)

Haario et al describe the specification of a proposal as the potential bottleneck of the Metropolis algorithm
when we have small knowledge of the target distribution. The proposal distribution influences the mixing of
the chain and the convergence. Furthermore, it should be easy to sample from for computational efficiency.
The adaptive proposal addresses the problem of choosing a proposal by automatically adjusting the proposal
distribution based on the samples already obtained. The adaptive proposal proves to be especially strong when
the target distribution is non-linear or curved and there is correlation between the components. In the case
of correlated components Haario et al. have found the adaptive proposal to be more effective compared to
a Metropolis algorithm with not well tuned proposal and not much less effective compared to a Metropolis
algorithm with optimally selected proposal. Compared to the sampler in part a) with an adaptive proposal we
do not have to be concerned with the choice of Σ which can prove to be difficult. The implementation of the
sampler in part c) shows increased computational speed and smaller upper confident intervals for the Gelman
Rubin diagnostic. Furthermore, acf’s for the adaptive proposal sampler shown in Figures 11 and 12 decrease
quicker than those for the sampler in part a), which indicates better mixing and smaller dependence in the
chain. Additionally we obtain increased effective sample sizes compared to the sampler in part a) as shown in
Table 1. The resulting estimates of the means are also more accurate. Comparing the joint densities shown in
Figures 8 and 13 it can be observed that the properties of the true joint density (e.g. symmetry) for extreme
x-values are more accurate for the sample obtained with the adaptive proposal sampler. All these are desirable
properties of a sampler which are obtained, without choosing a specific proposal. A disadvantage that is not
observed in our case is that the adaptive proposal sampler is an approximate method which can lead to a bias

5

in the simulation [1].
For a more detailed comparison of the samplers the bias and standard errors as well as root mean squared errors
of several estimates could be computed by repeated sampling with the different samplers.

ESS Ê(.) Time
Sampler a) X 1883.4 -0.2817 1.34s

Y 1409.6 1.5461
Sampler b) X 2374.1 0.021 1.22s

Y 1989.8 1.622

Table 1: Properties based on samples of size 105 and starting values X0 = c(0, 3) and Σ = Σ̂. For the adaptive
proposal we take U=H=200. A burn-in of 104 points is chosen. Time reported is the average time of 10
iterations taken to sample a chain of length 5× 104

Question 2

In Question 2 we consider the density

g(θ) = k

(
4

10
exp

{
−(8− θ)2

}
+

6

10
exp

{
−(30− θ)2

})
∝ exp {−H(θ)} ,

where k is the normalising constant. In Figure 16 we can observe the two separated modes of g(θ) (Tempered
distribution with T=1).

a)

First consider an additive random walk Metropolis Hastings algorithm with normally distributed noise (mean 0
and variance σ2) to sample from g(.). To demonstrate that such an algorithm will not explore the entire state
space we consider two different scenarios.

First, consider such an algorithm with small sigma (e.g. around 1). With such a σ, the acceptance rate will be
good enough for the states to change frequently. However, the variance of the proposal is to small for the chain
to jump between the different modes of g(.) (except in some very rare cases). Thus, depending on the starting
value a chain converges to one of the modes and does not explore the entire state space. This scenario can be
observed in Figure 14.
Secondly consider such an algorithm with large σ. Due to the large variance the proposals are more likely to
be far away from the current state. Thus the chain might jump between the different modes. However, such
proposals are less likely to be accepted, so the chain jumps fewer times. This causes very high dependence and
slow to no convergence of the chain. This scenario can be observed in Figure 15.
We conclude that the entire state space can not be explored properly with a simple Metropolis Hastings algo-
rithm.

Figure 14: Traceplots for chains of length 103 for
several starting values with proposal standard de-
viation equal to 1.

Figure 15: Traceplots for chains of length 103 for
several starting values with proposal standard de-
viation equal to 20.

6

b)

To sample from this density a parallel tempering algorithm is implemented. We define the tempered distributions
with temperatures Ti, i=1,...,M, to be

gTi(θ) = k

(
4

10
exp

{
−(8− θ)2

}
+

6

10
exp

{
−(30− θ)2

})1/Ti 1

ZTi

∝ exp

{
−H(θ)

Ti

}
,

where ZTi
=
∫
gTi

(θ)dθ and T1 < T2 < · · · < TM .

One iteration of the implemented parallel tempering algorithm consists of a normal additive random walk
proposal Metropolis Hastings step to update each of the M chains, which upon setting the variance of the
proposal distribution for each chain fixes the transition kernels P1, . . . , PM (for details refer to Algorithm 3).
After each chain is updated, swaps between the chains are proposed. For each chain l=1,...,M we define the
between-chain exchange probabilities according to which swaps are proposed to be

qB(l,m) = P[Swap chain l with chain m | chain l selected]

=


1
2 2 ≤ I < M,m = l − 1, l + 1
1 l = 1 and m = 2, or l = M and m = M − 1
0 otherwise

Then the between-chain exchange that proposes to swap xl,the current state of chain l, with xm, that of chain
m, is accepted with probability

α = min

{
1,
πl (xm)πm (xl) qB(m, l)

πl (xl)πm (xm) qB(l,m)

}
For the tempered distributions

πl (xm)πm (xl)

πl (xl)πm (xm)
= exp

{
(H (xl)−H (xm))

(
1

Tl
− 1

Tm

)}
The samples collected for x1 across iterations represent a sample from the marginal π1 ≡ π, the target distri-
bution. In this particular implementation outlined in Algorithm 3 we propose swaps in a random order each
iteration. For cleaner code we define a function called rqB(.) proposing the swapping partner given chain l is
selected according to qB(l, .). Furthermore, the Metropolis steps are vectorised but will be written as a for loop
in the pseudo code.

Algorithm 3: Parallel tempering algorithm for g(θ)

Inputs: X0 = (X
(1)
0 , . . . ,X

(M)
0) (vector of starting values), Ts (vector of temperatures),

σ = (σ(1), . . . , σ(M)) (proposal standard deviations for each temperature), nsteps (Number of
iterations), g (Target up to proportionality)

for i=1. . . nsteps do
for l=1. . .M do

Propose Y ∼ N (X
(l)
i−1, σ

(l))
Simulate V ∼ Uniform(0, 1)

if V ≤ α = min

(
1, g(Y)

g(X
(l)
i−1)

)
then

X
(l)
i = Y

else

X
(l)
i = X

(l)
i−1

end

end
for l in permutation({1, ...,M}) do

Propose swapping partner m ∼ rqB(l, .)
Simulate V ∼ Uniform(0, 1)

if V ≤ α = min
(

1, exp
{

(H (xl)−H (xm))
(

1
Tl
− 1

Tm

)}
qB(m,l)
qB(l,m)

)
then

Swap X
(l)
i with X

(m)
i

end

end

end

For the following discussion we use temperatures Ts = (1, 2, 5, 10, 20, 50, 100) with transition kernels specified
by the standard deviations σ = (0.3, 0.6, 1, 1.6, 4, 9, 14). The variances are chosen increasingly as with increasing

7

temperature the tempered distributions become flatter so that big jumps are still accepted. The swaps will then
accelerate the mixing. In Figure 16 the shapes of some tempered distributions can be observed. Figure 17
shows the traceplots for 6 distinct starting values and 104 iterations indicating good convergence. Furthermore
the Gelman plot is presented in Figure 18 and the Gelman Rubin diagnostic is computed to be 1 with upper
confident interval 1.

Figure 16: Tempered distribu-
tions Figure 17: Traceplots Figure 18: Gelman plot

Taking starting the starting value X0 = 0 for each chain and with the transition kernels as specified above we
obtain a sample of length 9 × 104 after the first 104 points are discarded as burn-in. Figure 20 shows the acf
of this sample. The acf decreases relatively quickly which indicates good mixing and hence good exploration of
the state space. The ESS is computed to be 4316. The Histogram presented in Figure 20 matches the shape
of that of the true density well. For a better comparison the estimated density based on the sample is plotted
together with the true density in Figure 21. The two densities are a very close fit with small discrepancies in
the modes. Thus, we can conclude that the sampler is exploring the full state space and correctly sampling
from the target distribution.

Figure 19: Acf of sample Figure 20: Histogram of sample
Figure 21: Estimated vs true den-
sity

c)

In this part we estimate P (θ > 20) where θ ∼ g(.). The true value is numerically computed to be 0.6 with
absolute error smaller 1.6× 10−5. Based on the sample obtained in the way as described above we compute the
estimate

P̂20 =
1

9× 104

9×104∑
i=1

I(Xi > 20) = 0.6005

which is accurate with an error of 5× 10−4.

References

[1] Haario & Saksman & Tamminen. “Adaptive proposal for random walk Metropolis algorithm.” In: Compu-
tational Statistics 14 (1999), pp. 375–395.

8

Appendix

Listing 1: Code for question 1

1 # plot density

2 f <- function(x,y) exp(-x^2/100 - (y+3/100*x^2-3)^2)

3

4 x_vec <- seq(-15 ,15 ,0.1)

5 y_vec <- seq(-5,10,0.1)

6 grid <- expand.grid(x=x_vec ,y=y_vec)

7 f_points <- f(grid$x, grid$y)
8

9 dat <- data.frame(x = c(grid$x), y=c(grid$y), f=c(f_points))

10

11 fig <- plot_ly(x = dat$x, y=dat$y, z=dat$f, type = ’mesh3d ’)

12 fig

13 # simple metropolis hastings

14 MetrHastw <- function(x0 , sigmapropx , sigmapropy , nsteps , f){

15 X <- matrix(NA ,nrow=2, ncol=nsteps +1)

16 X[,1] <- x0

17

18 for (i in 2:(nsteps +1)){

19 x <- rnorm(1,mean=X[1,(i-1)], sd=sigmapropx)

20 y <- rnorm(1,mean=X[2,(i-1)], sd=sigmapropy)

21 if (runif (1) <=min(exp(log(f(x,y))-log(f(X[1,i-1], X[2,i-1]))), 1)) X[,i] <- c(x←↩
,y)

22 else X[,i] <- X[,i-1]

23 }

24 X[,-1]

25 }

26 # algorithm taking into account scale and dependency

27 # by specifying the covariance matrix of the proposal

28 MetrHastw_cov <- function(x0 , sigmapropx , sigmapropy , cova , nsteps , f){

29 X <- matrix(NA,nrow=2, ncol=nsteps +1)

30 X[,1] <- x0

31

32 for (i in 2:(nsteps +1)){

33 prop <- rmvnorm(1,mean=X[,i-1], sigma=matrix(c(sigmapropx ^2,cova ,cova ,←↩
sigmapropy ^2), ncol =2))

34 x <- prop [1]

35 y <- prop [2]

36 if (runif (1) <=min(exp(log(f(x,y))-log(f(X[1,i-1], X[2,i-1]))), 1)) X[,i] <- c(x←↩
,y)

37 else X[,i] <- X[,i-1]

38 }

39 X[,-1]

40 }

41

42

43 # tuning parameters

44 X_mh_adj <- MetrHastw_cov(c(0,3), 6.884244 ,2.122618 , 0.2264226 ,10^5 ,f)

45 cov <- cov(X_mh_adj[1,], X_mh_adj[2,])

46 sd_x <- sd(X_mh[1,])

47 sd_y <- sd(X_mh[2,])

48 cov <- 0

49 sd_x <- 1

50 sd_y <- 1

51

52 for (i in 1:5){

53

9

54 print(c(sd_x, sd_y,cov))

55 Dummy <- MetrHastw_cov(c(0,3), sd_x,sd_y, cov ,10^5 ,f)

56 # update parameters

57 cov <- cov(Dummy [1 ,10^4:10^5] , Dummy [2 ,10^4:10^5])

58 sd_x <- sd(Dummy [1 ,10^4:10^5])

59 sd_y <- sd(Dummy [2 ,10^4:10^5])

60

61 }

62 # Then trying several values around this estimate

63 # multiple chain convergence diagnostics

64 set.seed (0)

65 N <- 5*10^4 # chain length

66 X0s <- replicate(6, rnorm(2,c(0,3), 8))

67 samplesX <- matrix(rep(0,dim(X0s)[2]*N), nrow=dim(X0s)[2])

68 samplesY <- matrix(rep(0,dim(X0s)[2]*N), nrow=dim(X0s)[2])

69 for (i in 1:dim(X0s)[2]){

70 sample <- MetrHastw_cov(X0s[,i], 7 ,2.1, 0.22,N,f)

71 samplesX[i,] <- sample [1,]

72 samplesY[i,] <- sample [2,]

73 }

74

75

76 chainsX <- lapply (1: dim(X0s)[2], function(i) mcmc(samplesX[i,]))

77 chainsY <- lapply (1: dim(X0s)[2], function(i) mcmc(samplesY[i,]))

78 X0s

79 traceplot(chainsX , main=’Traceplots for X’)

80 traceplot(chainsY , main=’Traceplots for Y’)

81 gelman.diag(mcmc.list(chainsX))

82 gelman.diag(mcmc.list(chainsY))

83 gelman.plot(mcmc.list(chainsX), main=’Gelman Plot for X’)

84 gelman.plot(mcmc.list(chainsY), main=’Gelman Plot for Y’)

85

86 # sample

87 set.seed (0)

88 X_mh_final <- MetrHastw_cov(c(0,3), 7 ,2.1, 0.22 ,10^5 ,f)

89 plot(X_mh_final[1,], type=’l’)

90 plot(X_mh_final[2,], type=’l’)

91

92 plot(X_mh_final [1 ,(500:10^5)], X_mh_final [2 ,(500:10^5)], col=rgb(red=0, green=0, ←↩
blue=1, alpha =0.01) , xlab=’x’, ylab=’y’, main=’Joint Distribution f(x,y)’, xlim←↩
=c(-25,25), ylim=c(-20,20))

93 acf(X_mh_final [1 ,10^4:10^5] , lag.max=200, main=’Acf of X’)

94 acf(X_mh_final [2 ,10^4:10^5] , lag.max=200, main=’Acf of Y’)

95

96 #mean estimates

97 mean(X_mh_final [1 ,(10^4+1) :10^5])

98 mean(X_mh_final [2 ,(10^4+1) :10^5])

99

100 #numerical integration for finding means

101 IntY <- function(x) sapply(x, function(b) integrate(function(y) f(b,y),-Inf ,Inf)$←↩
value)

102 IntX <- function(y) sapply(y, function(b) integrate(function(x) f(x,b),-Inf ,Inf)$←↩
value)

103 k <- 1/integrate(function(x) IntY(x), -Inf , Inf)$value
104

105 k*integrate(function(x) x*IntY(x), -Inf , Inf)$value
106 k*integrate(function(y) y*IntX(y), -Inf , Inf)$value
107

108 # adaptive proposal algorithm

109 c_2 <- 2.4/sqrt (2)

110 AP <- function(X0=c(0,3), H, U, nsteps , f){

10

111

112 X <- matrix(NA ,nrow=2, ncol=nsteps+H)

113 X[,1] <- X0

114 X[,2:(H)] <- MetrHastw_cov(X0 , 7, 2, 0.22, H-1, f)

115

116 Kt <- X[,1:H]

117 Kt_centered <- Kt - apply(Kt, 1, mean)

118

119 for (i in (H+1):(nsteps+H)){

120

121 Y <- X[,i-1] + c_2/sqrt(H-1)* Kt_centered %*% rnorm(H)

122

123 if (runif (1) <=min(f(Y[1], Y[2])/f(X[1,i-1], X[2,i-1]), 1)) X[,i] <- Y

124 else X[,i] <- X[,i-1]

125

126 if ((i%%U)==0){

127 Kt <- X[,(i-H+1):(i)]

128 Kt_centered <- Kt - apply(Kt, 1, mean)

129 }

130 }

131 X[,(1+H):(H+nsteps)]

132 }

133

134 # ap multiplc chain conv diagnostics

135 set.seed (0)

136 N <- 5*10^4 # chain length

137 X0s <- replicate(6, rnorm(2,c(0,3), 8))

138 samplesX_ap <- matrix(rep(0,dim(X0s)[2]*N), nrow=dim(X0s)[2])

139 samplesY_ap <- matrix(rep(0,dim(X0s)[2]*N), nrow=dim(X0s)[2])

140 for (i in 1:dim(X0s)[2]){

141 sample_ap <- AP(X0s[,i],H=200, U=200, nsteps=N, f)

142 samplesX_ap[i,] <- sample_ap[1,]

143 samplesY_ap[i,] <- sample_ap[2,]

144 }

145

146

147 chainsX_ap <- lapply (1: dim(X0s)[2], function(i) mcmc(samplesX_ap[i,]))

148 chainsY_ap <- lapply (1: dim(X0s)[2], function(i) mcmc(samplesY_ap[i,]))

149 X0s

150 traceplot(chainsX_ap , main=’Traceplots for X’)

151 traceplot(chainsY_ap , main=’Traceplots for Y’)

152 gelman.diag(mcmc.list(chainsX_ap))

153 gelman.diag(mcmc.list(chainsY_ap))

154 gelman.plot(mcmc.list(chainsX_ap), main=’Gelman Plot for X’)

155 gelman.plot(mcmc.list(chainsY_ap), main=’Gelman Plot for Y’)

156

157 # sample

158 set.seed (0)

159 X_AP2 <- AP(c(0,3),H=200, U=200, nsteps =10^5 , f)

160 plot(X_AP2 [1 ,(10^4:10^5)], X_AP2 [2 ,(10^4:10^5)], col=rgb(red=0, green=0, blue=1, ←↩
alpha =0.01) , xlab=’x’, ylab=’y’, main=’Joint Distribution f(x,y)’, xlim=c←↩
(-25,25), ylim=c(-20,20))

161 acf(X_AP2 [1 ,(10^4:10^5)], lag.max=200, main=’Acf for X’)

162 acf(X_AP2 [2 ,(10^4:10^5)], lag.max=200, main=’Acf for Y’)

163 plot(X_AP2 [1 ,(10^4:10^5)], type=’l’)

164 plot(X_AP2 [2 ,(10^4:10^5)], type=’l’)

165

166

167

168 #effective sample size and estimates

169 mean(X_AP2 [1 ,10^4:10^5])

11

170 mean(X_AP2 [2 ,10^4:10^5])

171

172 ESS_ap2 <- c(effectiveSize(mcmc(X_AP2 [1 ,10^4:10^5])), effectiveSize(mcmc(X_AP2←↩
[2 ,10^4:10^5])))

173 ESS_ap2

174 ESS_mh <- c(effectiveSize(mcmc(X_mh_final [1 ,10^4:10^5])), effectiveSize(mcmc(X_mh_←↩
final [2 ,10^4:10^5])))

175 ESS_mh

176 # time algorithms

177 system.time(replicate (10, AP(c(0,3),H=200, U=200, nsteps =5*10^4, f)))

178 system.time(replicate (10, MetrHastw_cov(c(0,3), 7 ,2.1, 0.22,5*10^4,f)))

Listing 2: Code for question 2

1 a <- 8

2 g <- function(theta) 4/10*exp(-(a-theta)^2) + 6/10 * exp(-(30- theta)^2)

3

4 x <- seq (0 ,38 ,0.01)

5 plot(x,g(x), type=’l’, main=’g(.) up to proportionality ’)

6

7 MetrHastw1 <- function(X0 , sigmaprop , nsteps , f){

8 X <- numeric(nsteps +1)

9 X[1] <- X0

10

11 for (i in 2:(nsteps +1)){

12 Y <- rnorm(1,mean=X[i-1], sd=sigmaprop)

13 if (runif (1) <=min(f(Y)/f(X[i-1]), 1)) X[i] <- Y

14 else X[i] <- X[i-1]

15 }

16 X[-1]

17 }

18 # not exploring entire state space

19 X0s <- seq(0,35,3)

20 chains <- lapply (1: length(X0s), function(i) mcmc(MetrHastw1(X0s[i], 1, 10^3, g)))

21 traceplot(chains , ylim=c(0,36), main=’Traceplots for proposal SD=1’)

22

23 X0s <- c(1,17,30,40)

24 chains <- lapply (1: length(X0s), function(i) mcmc(MetrHastw1(X0s[i], 20, 10^3, g)))

25 traceplot(chains , main=’Traceplot for proposal SD=20’)

26

27 # parallel tempering algorithm

28 g_temp <- function(theta ,T) g(theta)^(1/T)

29 H <- function(x) -log(g(x))

30 # swapping probabilities

31 q_B <- function(l,m,M) {

32 if(2<=l & l<M & (m==(l-1) | m==l+1)) return (0.5)

33 if((l==1 & m==2) | (l==M & m==M-1)) return (1)

34 else return (0)

35 }

36 rq_B <- function(l,M){

37 if(l==1) return(l+1)

38 if(l==M) return(l-1)

39 if(2<=l & l<M) return(ifelse(runif (1) <1/2, l-1, l+1))

40 }

41

42 tempered <- function(Ts,x0s , sigmaprops , nsteps){

43 M <- length(Ts)

44 X <- matrix(rep(0,M*(nsteps +1)), nrow=M, ncol=nsteps +1)

45 X[,1] <- x0s

46 accepted_mh <- 0

12

47 accepted_sw <- 0

48 # prob accept swap

49 for (i in 2: nsteps +1){

50 #proposal

51 prop <- X[,i-1] + rnorm(M,mean=rep(0,M), sd=sigmaprops)

52 U <- runif(M)

53 ind <- c(U<= sapply (1:M, function(j) exp(log(g_temp(prop[j],Ts[j]))- log(g_temp←↩
(X[j,i-1],Ts[j])))))

54 # mh update for each density

55 X[ind ,i] <- prop[ind]

56 X[!ind ,i] <- X[!ind , i-1]

57 accepted_mh <- accepted_mh + sum(ind)

58 # between moves

59 for(l in sample (1:M)){

60 m <- rq_B(l,M)

61 if (runif (1) <=min(1, exp((H(X[l,i])-H(X[m,i]))*(1/Ts[l]-1/Ts[m])))) {

62 X[c(l,m),i] <- X[c(m,l),i]

63 accepted_sw <- accepted_sw + 1}

64 }

65 }

66 print(accepted_mh/(nsteps*M))

67 print(accepted_sw/(nsteps*M))

68 return(X[,-1])

69 }

70

71 #plot tempered distributions

72 Ts <- c(1,2,5,10,20, 50, 100, 200)

73 x <- seq (-10 ,50 ,0.01)

74 k <- 1/integrate(g,lower=-Inf ,upper=Inf)$value
75 plot(x,g(x)*k, type=’l’, main=’Tempered Distributions ’, xlim=c(-10,50), ylim=c←↩

(0,.4), ylab=expression(g[T](x)))

76 for(i in 1: length(Ts)) lines(x, g_temp(x,Ts[i])/integrate(function(y) g_temp(y,Ts[i←↩
]), lower=-Inf , upper=Inf)$value , col=i)

77 legend(’topright ’, legend=c("T=1", "T=2","T=5","T=10","T=20","T=50","T=100","T=200"←↩
),

78 col =1:(length(Ts)), lty=1, cex =0.8)

79

80 # multiple chains convergence diagnostics

81 X0s <- replicate(6, rnorm(length(Tsq), 0 ,10))

82 chains <- lapply (1:6, function(i) mcmc(tempered(Tsq , X0s[,i], c(0.3, 0.6, 1, 1.6, ←↩
4, 9,14), 10^4) [1,]))

83 gelman.diag(mcmc.list(chains))

84 traceplot(chains , main=’Traceplots ’)

85 gelman.plot(mcmc.list(chains), main=’Gelman Plot’)

86 # sample

87 set.seed (0)

88 Tsq <- c(1,2, 5, 10,20, 50, 100)

89 X_tempq <- tempered(Tsq , rep(0,length(Tsq)), c(0.3, 0.6, 1, 1.6, 4, 9,14), 10^5)

90 hist(X_tempq [1 ,10^3:10^5] , breaks =150, main=’Histogram of the sample ’, xlab=’x’)

91 plot(X_tempq [1 ,10^3:10^5] , type=’l’, main=’Traceplot ’, ylab=expression(X[t]))

92 acf(X_tempq [1 ,10^3:10^5] , lag.max=100, main=’ACF’)

93

94 #plot true density against estimated density

95 x <- seq (0 ,35 ,0.1)

96 plot(density(X_tempq [1 ,10^3:10^5] , adjust =0.1),ylim=c(0,1), main=’True density and←↩
estimated density ’)

97 lines(x, g(x)*k, col=’red’)

98 legend(’topright ’, legend=c("Estimated", "True"),

99 col=c(’black’, ’red’), lty=1, cex =0.8)

100

101 # estimate and numerical integration

13

102 mean(X_tempq [1 ,10^4:10^5] >20)

103 integrate(function(x) k*g(x), lower=20, upper=Inf)

14

